• Title/Summary/Keyword: Finite optical system

Search Result 145, Processing Time 0.023 seconds

A modulated Gaussian pupil derived from diffraction inverse problem approach and the characteristics of the OTF of the system (회절 역문제로 유도한 변조된 Gauss 동함수에 대한 결상계의 OTF)

  • 송영란;이민희;이상수
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.95-98
    • /
    • 1997
  • The Gaussian diffraction pattern initially assumed in the diffraction inverse problem is further sharply defined by multiplying $e^{-q{\omega}_0$\mid${\chi}$\mid$}$. The modified pupil function is obtained and the diffraction intensity distribution for the finite aperture ($-{\omega}_0~{\times}{\omega}_0$ is obtained, and then the OTF is derived analytically. It is found the OTF is equal to or less than the $(OTF)_{q=0}$, namely the modulation is not useful. It is shown that the narrowing down the initial Gaussian diffraction pattern does not give the anticipated improvement in OTF and the reason is clarified.

  • PDF

Study on Improvement of Signal to Background Ratio of Laser-based Fluorescence Imaging System (레이저 기반 형광 영상 시스템의 Signal to Background Ratio 향상 연구)

  • Kim, J.H.;Jeong, M.Y.
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.107-111
    • /
    • 2020
  • Recently, as an aging society progresses, a lot of interest in health and diagnosis is increasing, As the field of various bio-imaging systems for guided surgery capable of accurate diagnosis has emerged as important, a Fluorescence imaging system capable of accurate measurement and real-time confirmation has emerged as an important field. Fluorescence images currently being used are mainly in the NIR-I band, but many studies are in progress in the NIR-II band in order to improve resolution and confirm fluorescence deeply and accurately. In this paper, the difference between NIR-I and NIR-II, optical characteristics, and SBR (signal to background ration) of a fluorescent imaging system, was investigated using the finite element (FEM) method. After confirming, it was confirmed that the SBR was 16.2 times higher in the NIR-II area than in the NIR-I by making the skin phantom and measuring the fluorescence. It is confirmed that the enhancement in SBR of the Fluorescence imaging system is more effective in the NIR-II region than in the NIR-I region and expected to be used in application fields such as guided surgery, bio-sensor and also device which can detect the defect of optical devices.

IGRINS Mirror Mount Design for Three Off-Axis Collimators and One Slit-Viewer Fold Mirror

  • Rukdee, Surangkhana;Park, Chan;Kim, Kang-Min;Lee, Sung-Ho;Chun, Moo-Young;Yuk, In-Soo;Oh, Hee-Young;Jung, Hwa-Kyoung;Lee, Chung-Uk;Lee, Han-Shin;Rafal, Marc D.;Barnes, Stuart;Jaffe, Daniel T.
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.2
    • /
    • pp.233-244
    • /
    • 2012
  • The Korea Astronomy and Space Science Institute and the Department of Astronomy at the University of Texas at Austin are developing a near infrared wide-band high resolution spectrograph, immersion grating infrared spectrometer (IGRINS). The compact white-pupil design of the instrument optics uses seven cryogenic mirrors, including three aspherical off-axis collimators and four flat fold mirrors. In this study, we introduce the optomechanical mount designs of three off-axis collimating mirrors and one flat slit-viewer fold mirror. Two of the off-axis collimators are serving as H and K-band pupil transfer mirrors, and are designed as system alignment compensators in combination with the H2RG focal plane array detectors in each channel. For this reason, the mount designs include tip-tilt and parallel translation adjustment mechanisms to properly perform the precision alignment function. This means that the off-axis mirrors' optomechanical mount designs are among the most sensitive tasks in all IGRINS system hardware. The other flat fold mirror is designed within its very limitedly allowed work space. This slit-viewer fold mirror is mounted with its own version of the six-point kinematic optics mount. The design work consists of a computer-aided 3D modeling and finite element analysis (FEA) technique to optimize the structural stability and the thermal behavior of the mount models. From the structural and thermal FEA studies, we conclude that the four IGRINS mirror mounts are well designed to meet all optical stability tolerances and system thermal requirements.

The Development of Confocal Microscopy Using the Amplified Double-compound Flexure Guide (레버 증폭 구조의 플렉서를 이용한 공초점 현미경의 개발)

  • Lee, Sang-Won;Kim, Wi-Han;Jung, Young-Dae;Park, Min-Kyu;Kim, Jee-Hyun;Lee, Sang-In;Lee, Ho
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2011
  • A confocal microscope was developed utilizing a scanning sample stage based on a home-built double-compound flexure guide. A scanning sample stage with nano-scale resolution consisted of a double leaf spring based flexure, a displacement amplifying lever, a Piezo-electric Transducer(PZT) actuator and capacitance sensors. The performance of the two-axis stage was analyzed using a commercial finite element method program prior to the implementation. A single line laser was employed as the light source along with the Photo Multiplier Tube(PMT) that served as the detector. The performance of the developed confocal microscope was evaluated with a mouse ear skin imaging test. The designed scanning stage enabled us to build the confocal microscope without the two optical scanning mirror modules that are essential in the conventional laser scanning confocal microscope. The elimination of the scanning mirror modules makes the optical design of the confocal microscope simpler and more compact than the conventional system.

Development of the Dot Sight Device by Using the Doublet Reflector (Doublet 반사경을 이용한 도트 사이트 장치의 개발)

  • Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.13 no.1
    • /
    • pp.65-69
    • /
    • 2008
  • Purpose: To develop a dot sight device for a sighting shot using the doublet reflector. Methods: We designed the singlet reflector and the doublet reflector by Sigma 2000 program and compared the one to the other. Results: In analysis of finite ray aberration, we could confirm that it has the effective field of view with the free-parallax which is 3.3 times wider than the existing dot sight device using the singlet reflector. If you use the doublet reflector, the central thickness of optical system become more than two times bigger than the existing one. As a result, when the image of a target object is made on the observer's retina, if you make the first side's radius of curvature equal with the second one as the case of the singlet reflector, changes in magnification are appeared. To conquer this problem, we had to make be satisfied with the afocal condition in the case of doublet reflector. Conclusions: we could develop the dot sight device for a sighting shot using the doublet reflector which has the effective field of view with the free-parallax which is 3.3 times wider than the existing dot sight device using the singlet reflector.

  • PDF

Effective Control of Stiffness of Tungsten Probe for AFM by Electrochemical Etching (전기화학적 에칭에 의한 AFM용 텅스텐 탐침의 강성 제어)

  • Han, Guebum;Lee, Seungje;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.30 no.4
    • /
    • pp.218-223
    • /
    • 2014
  • This paper presents a method of controlling the stiffness of a tungsten probe for an atomic force microscope (AFM) in order to provide high-quality phase contrast images in accordance with sample characteristics. While inducing sufficient deformation on sample surfaces with commercial Si or $Si_3N_4$ probes is difficult because of their low stiffness, a tungsten probe fabricated by electrochemical etching with appropriately high stiffness can generate relatively large elastic deformation without damaging sample surfaces. The fabrication of the tungsten probe involves two separate procedures. The first procedure involves immersing a tungsten wire with both ends bent parallel to the surface of an electrolyte and controlling the stiffness of the tungsten cantilever by decreasing its diameter using electrochemical etching in the direction of the central axis. The second procedure involves immersing the end of the etched tungsten cantilever in the direction perpendicular to the surface of the electrolyte and fabricating a tungsten tip with a tip radius of 20-50 nm via the necking phenomenon. The latter etching process applies pulse waves every 0.25 seconds to the manufactured tip to improve its yield. Finite element analysis (FEA) of the stiffness of the tungsten probe as a function of its diameter showed that the stiffness of the tungsten probes greatly varies from 56 N/m to 3501 N/m according to the cantilever diameters from $30{\mu}m$ to $100{\mu}m$, respectively. Thus, the proposed etching method is effective for producing a tungsten probe having specific stiffness for optimal use with an AFM and certain samples.

A Study on a Highly Sensitive Strain Sensor based on Rayleigh Wave (레일리파 기반의 고감도 변형률 센서에 관한 연구)

  • Lee, Ki Jung;Jo, Minuk;Fu, Chen;Eun, Kyoungtae;Oh, Haekwan;Choa, Sung-Hoon;Yang, Sang Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.495-501
    • /
    • 2014
  • Piezoresistive-type, capacitive-type, and optical-type sensors have mainly been used for measuring a strain. However, in building a sensor network for remote monitoring using these conventional sensors there are disadvantages such as the complexity of a measuring system including wireless communication circuitry and high cost. In this paper, we demonstrates a highly-sensitive surface acoustic wave (SAW) strain sensor which is advantageous to harsh environments and wireless network. We designed and fabricated the SAW strain sensor. The SAW strain sensor attached on a specimen was tested with a tensile tester. The strain on the sensor surface was measured with a commercial strain gauge and compared with that obtained from strain analysis. The central frequency shift of the SAW sensor was measured with a network analyzer. The sensitivity of the SAW strain sensor is 134 $Hz/{\mu}{\varepsilon}$ which is high compared to previous results.

Development of Fine Dust Measurement Method based on Ultrasonic Scattering (초음파 산란 기법을 적용한 미세먼지 측정법 개발)

  • Choi, Hajin;Woo, Ukyong;Hong, Jinyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.40-48
    • /
    • 2019
  • New concept of fine dust measurement method is suggested based on ultrasonic scattering. These days, fine dust has been social problem in Korea, and many researches has been conducted including the area structural maintenance. Conventional measurement system such as optical scattering and semiconductor has a limit from environmental factors like relative humidity. However, ultrasound is based on mechanical waves, which perturb mechanical properties of medium such as density and elastic constants. Using the advantage, the algorithm for fine dust measurement is derived and evaluated using 2-D finite difference method. The numerical analysis simulates ultrasonic wave propagation inside multiple scattering medium like fine dust in air. Signal processing scheme is also suggested and the results show that the error of the algorithm is around minimum of 0.7 and maximum of 24.9 in the number density unit. It is shown that cross-section of fine dust is a key parameter to improve the accuracy of algorithm.

PERFORMANCE TEST FOR A PDS MICRODENSITOMETER MODEL 1010GMS

  • Hong, S.S.;Paek, W.G.;Lee, S.G.
    • Journal of The Korean Astronomical Society
    • /
    • v.25 no.1
    • /
    • pp.23-46
    • /
    • 1992
  • The electrical, mechanical and optical capabilities have been tested of the microdensitometer PDS 1010GMS at the Korea Astronomy Observatory. The highest stage of scan speed 255 csu (conventional speed unit) is measured to be 47 mm/s. At this speed the position is displaced by $4{\mu}m$ to the direction of scanning and the density is underestimated by $0.4{\sim}0.7D$. Standard deviation in the measured density is proportional to $A^{-0.46}$, where A is the area of scan aperture. The accuracy of position repeatability is ${\pm}1{\mu}m$, and that of density repeatability is ${\pm}(0.003{\sim}0.03)D$. Callier coefficient is determined to be 1.37; the semispecular density is directly proportional to the diffuse density up to 3.5D. Because the logarithmic amplifier has a finite response time, the densities measured at high scan speeds are underestimated to the degree that speeds higher than 200 csu are inadequate for making an accurate astronomical photometry. After power is on, an about 5 hour period of warming is required to stabilize the system electrically and mechanically as well. On the basis of this performance test, we have determined the followings as the optimum scan parameters for the astronomical photometry: For the scan aperture $10\;\sim\;20{\mu}m$ is optimal, and for the scan speed. $20\;{\sim}\;50$ csu is appropriate. These parameter values are chosen in such a way that they may keep the density repeatability within ${\pm}0.01D$, the position displacement under $1{\mu}m$, and the density underestimation below 0.1D even in high density regions.

  • PDF

Performance Analysis for Mirrors of 30 cm Cryogenic Space Infrared Telescope

  • Park, Kwi-Jong;Moon, Bong-Kon;Lee, Dae-Hee;Jeong, Woong-Seob;Nam, Uk-Won;Park, Young-Sik;Pyo, Jeong-Hyun;Han, Won-Yong
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.3
    • /
    • pp.321-328
    • /
    • 2012
  • We have designed a 30 cm cryogenic space infrared telescope for astronomical observation. The telescope is designed to observe in the wavelength range of 0.5~2.1 ${\mu}m$, when it is cooled down to 77 K. The result of the preliminary design of the support structure and support method of the mirror of a 30 cm cryogenic space infrared telescope is shown in this paper. As a Cassegrain prescription, the optical system of a 30 cm cryogenic space infrared telescope has a focal ratio of f/3.1 with a 300 mm primary mirror (M-1) and 113 mm secondary mirror (M-2). The material of the whole structure including mirrors is aluminum alloy (Al6061-T6). Flexures that can withstand random vibration were designed, and it was validated through opto-mechanical analysis that both primary and secondary mirrors, which are assembled in the support structure, meet the requirement of root mean square wavefront error < ${\lambda}/8$ for all gravity direction. Additionally, when the M-1 and flexures are assembled by bolts, the effect of thermal stress occurring from a stainless steel bolt when cooled and bolt torque on the M-1 was analyzed.