DOI QR코드

DOI QR Code

Development of Fine Dust Measurement Method based on Ultrasonic Scattering

초음파 산란 기법을 적용한 미세먼지 측정법 개발

  • Received : 2019.10.17
  • Accepted : 2019.12.30
  • Published : 2019.12.01

Abstract

New concept of fine dust measurement method is suggested based on ultrasonic scattering. These days, fine dust has been social problem in Korea, and many researches has been conducted including the area structural maintenance. Conventional measurement system such as optical scattering and semiconductor has a limit from environmental factors like relative humidity. However, ultrasound is based on mechanical waves, which perturb mechanical properties of medium such as density and elastic constants. Using the advantage, the algorithm for fine dust measurement is derived and evaluated using 2-D finite difference method. The numerical analysis simulates ultrasonic wave propagation inside multiple scattering medium like fine dust in air. Signal processing scheme is also suggested and the results show that the error of the algorithm is around minimum of 0.7 and maximum of 24.9 in the number density unit. It is shown that cross-section of fine dust is a key parameter to improve the accuracy of algorithm.

본 연구에서는 건설 현장에서 발생하는 미세먼지의 정확한 측정을 위한 새로운 개념의 알고리즘을 제안한고 검증한다. 기존 측정법의 한계를 보완하기 위하여 초음파 산란 기반 측정법을 제안하였으며, 유한 차분법을 통하여 알고리즘의 활용 및 그 정확성을 검증하고자 하였다. 미세먼지와 같은 다중 산란을 일으키는 현상에 대하여 수학적 모델링을 수행하였고 신호의 감쇠율, 평균 자유 거리, 산란 반경으로 미세먼지의 단위 밀도를 예측할 수 있는 알고리즘을 도출하였다. 2-D 시간 이력해석을 통하여 미세먼지 부피비에 따라 알고리즘을 검증하였으며 신호 해석을 위한 신호처리 기법을 나타내었다. 해석 결과, 알고리즘의 오차는 개수밀도 단위 최소 0.7, 최대 24.9를 보였다. 오차율을 줄이기 위해 미세먼지의 산란 반경을 주파수별로 도출하여야 하는 추후 연구가 필요함을 토의하였다.

Keywords

References

  1. Hyun, J. H., Kim, H. J.(2019), Development of Fine Dust Reduction Technology on Roadsides Using Functional Construction Materials, Proceedings of the Korea Institute for Structural Maintenance and Inspection, 23(2), 273.
  2. Kang, T. W., Park, G. L.(2019), A Case Study on the Environmental Impact by the Tire and Road Wear Particles, Proceedings of the Korea Institute for Structural Maintenance and Inspection, 23(2), 276.
  3. Baek, C. M.(2019), Development of Scattering Dust Reduction Technology in the Life Cycle of Road Pavement, Proceedings of the Korea Institute for Structural Maintenance and Inspection, 23(2), 274.
  4. Kim, Y. K., Ahn, H. R., Lee, S. W.(2019), Fundamental Study on the Fixation Method of Particulate Matter Precursor Reduction Material for Existing Concrete Structures, Proceedings of the Korea Institute for Structural Maintenance and Inspection, 23(2), 275.
  5. Kim, S. D., Kim, C. H., Hwang, U. H.(2008), A Study on the Particles Density Estimation in Seoul Metropolitan, Journal of Environmental Health Sciences, 34(2), 131-136.
  6. Kim, E. Y., Seo, S. J., Kim, S. M., Jung, S. W., Lee, Y. M., Oh, S. H., Park, G. T., Kim, K. H., Kim, J. W., Hong, Y. D., Lee, T. H., Bae, M. S.(2018), Determination of Hourly Density Using Real Time PM2.3 Mass and Volume Concentrations at the Road Side-OPS Correction Based on Optical Absorption of eBC, Journal of Korean Society for Atmospheric Environment, 34(6), 865-875. https://doi.org/10.5572/KOSAE.2018.34.6.865
  7. Kim, S. J., Kang, H. S., Son, Y. S., Yoon. S. L., Kim, C. J., Kim, G. S., Kim, I. W.(2010), Compensation of Light Scattering Method for Real-Time Monitoring of Particulate Matters in Subway Stations, Journal of Korean Society for Atmospheric Environment, 26(5), 533-542. https://doi.org/10.5572/KOSAE.2010.26.5.533
  8. Lee, N. R., Um, H. U., Cho, H. S.(2018), Development of Detection and Monitoring by Light Scattering in Real Time, Fire Science and Engineering, 32(3), 134-139. https://doi.org/10.7731/KIFSE.2018.32.3.134
  9. Lee, B. J., Park, S. S.(2019), Evaluation of PM10 and PM2.5 Concentrations from Online Light Scattering Dust Monitors Using Gravimetric and Beta-ray Absorption Methods, Journal of Korean Society for Atmospheric Environment, 35(3), 357-369. https://doi.org/10.5572/kosae.2019.35.3.357
  10. Derode, A., Tourin, A., Fink, M.(2001), Random Multiple Scattering of Ultrasound. I. Coherent and Ballistic Waves, Physical Review E, 64, 36605. https://doi.org/10.1103/PhysRevE.64.036605
  11. Chekroun, M., Le Marrec, L., Abraham, O., Durand, O., Villain, G.(2009), Analysis of Coherent Surface Wave Dispersion and Attenuation for Non-destructive Testing of Concrete, Ultrasonics, 49(8), 743-751. https://doi.org/10.1016/j.ultras.2009.05.006
  12. Firouzi, K., Cox, B. T., Treeby, B. E., Saffari, N.(2012), A first-order k-space model for elastic wave propagation in heterogeneous media, Journal of the Acoustical Society of America, 132(3), 1274-1283.
  13. Salma, I., Dal Maso, M., Kulmala, M., Zaray, G.(2002), Modal Characteristics of Particulate Matter in Urban Atmospheric Aerosols, Microchemical Journal, 73, 19-26. https://doi.org/10.1016/S0026-265X(02)00046-2
  14. Liao, C. M., Huang, S. J., Yu, H.(2004), Size-dependent Particulate Matter Indoor/Outdoor Relationships for a Wind-induced Naturally Ventilated Airspace, Building and Environment, 39(4), 411-420. https://doi.org/10.1016/j.buildenv.2003.09.015
  15. Lonati, G., Giugliano, M.(2005), Size Distribution of Atmospheric Particulate Matter at Traffic Exposed Sites in the Urban Area of Milan(Italy), Atomospheric Environment, 40, S264-S274.
  16. Mariko, O. O., Fumio, S., Mitsutoshi, T.(2009), Distinguishing Nanomaterials Particles from Background Airborne Particulate Matter for Quantitative Exposure Assessment, Journal of Nanopart Research, 11(7), 1651-1659. https://doi.org/10.1007/s11051-009-9703-1
  17. Buonanno, G., Morawska, L., Stabile, L., Viola, A.(2010), Exposure to Particle Number, Surface Area and PM Concentrations in Pizzerias, Atomospheric Environment, 44(32), 3963-3969. https://doi.org/10.1016/j.atmosenv.2010.07.002
  18. Estokova, A., Stevulova, N., Kubincova. L.(2010), Particulate Matter Investigation in Inoor Environment, Global Nest Journal, 12(1), 20-26. https://doi.org/10.30955/gnj.000689
  19. Lee, Y. K., Lee, K. J., Lee, J. S., Shin, E. S.(2012), Regional Characteristics of Particle Size Distribution of PM10, Journal of Korean Society for Atmospheric Environment, 28(6), 666-674. https://doi.org/10.5572/KOSAE.2012.28.6.666
  20. Song, Y. A., Maher, B. A., Li, F., Wang, X., Sun, X.(2015), Particulate Matter Deposited on Leaf of Five Evergreen Species in Beijing, China: Source identification and size distribution, Atmospheric Environment, 105, 53-60. https://doi.org/10.1016/j.atmosenv.2015.01.032
  21. Kuuluvainen, H., Ronkko, T., Jarvinen, A., Saari, S., Karjalainen, P., Lahde, T., Pirjola, L., Niemi, J., Hillamo, R., Keskinen, J.(2016), Lung Deposited Surface Area Size Distributions of Particulate Matter in Different Urban Areas, Atomospheric Environment, 136, 105-113. https://doi.org/10.1016/j.atmosenv.2016.04.019
  22. Wallace, L., Jeong, S., Rim, D.(2019), Dynamic Behavior of Indoor Ultrafine Particles (2.3-694nm) due to Burning Candles in a Residence, Indoor air, 1-10.Stations, Journal of Korean Society for Atmospheric Environment, 26(5), 533-542. https://doi.org/10.5572/KOSAE.2010.26.5.533

Cited by

  1. 비산먼지 측정 정확도 개선을 위한 시뮬레이션 초음파 다중 산란 알고리즘 검증 vol.24, pp.6, 2020, https://doi.org/10.11112/jksmi.2020.24.6.119