• 제목/요약/키워드: Finite cylindrical shell

검색결과 199건 처리시간 0.022초

비스듬히 입사하는 음장에 대한 유한 길이의 탄성 원통 쉘의 음향 산란 (Acoustic scattering of an obliquely incident acoustic field by a finite elastic cylindrical shell)

  • 이근화;변성훈;김시문
    • 한국음향학회지
    • /
    • 제38권5호
    • /
    • pp.511-521
    • /
    • 2019
  • 본 연구에서는 무한 유체에 놓여있는 유한 길이의 탄성 원통 쉘에 외부에서 비스듬히 평면파가 입사할 때 발생하는 음향 산란 현상을 이론적으로 연구했다. 유한 길이의 원통 쉘에서는 해석적인 산란 해가 존재하지 않기 때문에, Kirchhoff 가정을 적용한 Ye의 산란 기법[Z. Ye, J. Acoust. Soc. Am. 102, 877-884 (1997)]을 사용했다. 탄성 원통 쉘의 특성은 3차원 탄성파 이론을 적용하여 구현했으며 원통 쉘 내부의 유체를 고려했다. 유도된 해석 해를 이용하여 내부 유체가 산란 음장에 미치는 효과, Rayleigh 변수에 대한 산란 음장, 탄성 재질의 변화에 따른 먼 거리 산란 함수를 살펴보았다.

임의 경계조건을 가진 원통셸 구조의 유체영향계수 해석 (An Analysis on the Fluid-Loading Coefficients of Cylindrical Shell Structure With Arbitrary end Conditions)

  • 전재진;정우진
    • 소음진동
    • /
    • 제6권3호
    • /
    • pp.297-303
    • /
    • 1996
  • The general approach using sine series expansions was represented to evaluate the radiation loading from a vibrating surface on a simply supported cylinder. In this paper, the fluid-loading coefficients (radiation impedance) for a submerged finite cylindrical shell with an arbitrary end condition are defined and evaluated. The vibrations of cylindrical shell are expressed by using cosine series expansions to analyze the radiation impedance for a finite cylindrical shell. It is possible to represent the displacements at both ends of cylindrical shell in comparison with sine series. The direct and cross modal components of fluid-loading coefficients are shown and the validity of cosine series expansions are verified from the results of numerical computations. This approach and results are directly applicable in the analysis of sound radiation from subemerged finite cylindrical shell with arbitrary end conditions.

  • PDF

Finite element vibration analysis of nanoshell based on new cylindrical shell element

  • Soleimani, Iman;Beni, Yaghoub T.;Dehkordi, Mohsen B.
    • Structural Engineering and Mechanics
    • /
    • 제65권1호
    • /
    • pp.33-41
    • /
    • 2018
  • In this paper, using modified couple stress theory in place of classical continuum theory, and using shell model in place of beam model, vibrational behavior of nanotubes is investigated via the finite element method. Accordingly classical continuum theory is unable to correctly compute stiffness and account for size effects in micro/nanostructures, higher order continuum theories such as modified couple stress theory have taken on great appeal. In the present work the mass-stiffness matrix for cylindrical shell element is developed, and by means of size-dependent finite element formulation is extended to more precisely account for nanotube vibration. In addition to modified couple stress cylindrical shell element, the classical cylindrical shell element can also be defined by setting length scale parameter to zero in the equations. The boundary condition were assumed simply supported at both ends and it is shown that the natural frequency of nano-scale shell using the modified coupled stress theory is larger than that using the classical shell theory and the results of Ansys. The results have indicated using the modified couple stress cylindrical shell element, the rigidity of the nano-shell is greater than that in the classical continuum theory, which results in increase in natural frequencies. Besides, in addition to reducing the number of elements required, the use of this type of element also increases convergence speed and accuracy.

전달행렬법에 의한 반구 원통형 쉘구조의 해석 (An Analysis of Hemisphere-cylindrical Shell Structure by Transfer Matrix Method)

  • 김용희;이윤영
    • 한국농공학회지
    • /
    • 제45권4호
    • /
    • pp.115-125
    • /
    • 2003
  • Shell structures are widely used in a variety of engineering application, and mathematical solution of shell structures are available only for a few special cases. The solution of shell structure is more complicated when it has such condition as winkler foundation, other problems. In this study many simplified methods (analogy of beam on elastic foudation, finite element method and transfer matrix method) are applied to analyze a hemisphere-cylindrical shell structures on elastic foundation. And the transfer matrix method is extensively used for the structural analysis because of its merit in the theoretical backgroud and applicability. Therefore, this paper presents the analysis of hemisphere-cylindrical shell structure base on the transfer matrix method. The technique is attractive for implementation on a numerical solution by means of a computer program coded in FORTRAN language with a few elements. To demonstrate this fact, it gives good results which compare well with finite element method.

조화 가진에 의한 원통형 음향 방사기의 방사 효율 특성 (The Characteristic of Radiation Efficiency from Harmonic-excited Cylindrical Radiator)

  • 김관주;최승권
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.516-523
    • /
    • 1998
  • Radiation efficiency of a cylindrical shell whose surface vibrates under harmonic distribution is investigated by theoretical solutions and Boundary Element Method. The vibration modes of a cylindrical shell is determined from experiment and is compared with the result of Finite Element Method. Harmonic vibration response of the cylindrical shell under the point excitation and the radiation phenomena from its response is analyzed by Finite Element Method and Boundary Element Method.

  • PDF

Observation of Strong In-plane End Vibration of a Cylindrical Shell

  • 길현권
    • 한국음향학회지
    • /
    • 제21권4호
    • /
    • pp.183-183
    • /
    • 2002
  • In this paper, the strong in-plane vibration has been experimentally observed at the end of a finite cylindrical shell. The strong in-plane vibration was generated by the evanescent wave field, which was excited along about half the length of the shell. The evanescent waves were generated due to mode conversion of elastic waves at the ends of the cylindrical shells.

유한 보강 원통형 셸 구조에 의한 수중 방사소음 해석 (An Analysis on the Underwater Sound Radiation from Finite Cylindrical Shell with Stiffeners)

  • 전재진;정우진
    • 소음진동
    • /
    • 제6권6호
    • /
    • pp.717-726
    • /
    • 1996
  • In this report, the underwater sound radiation from finite cylindrical shell with stiffeners which is the basic configuration of submerged vehicle is studied analytically and experimentally. The shell vibrations are obtained by using the shell theory of Sanders-Koitter. The stiffeners and modeled for I-type and the stiffness matrices are obtained by using beam model. In the analytical stuides, the vibrations of cylindrical shell are expressed by using cosine series expansions to consider the arbitrary end boundary conditions. It is agree to the theoretical and experimental results well.

  • PDF

스펙트럴유한요소법과 경계요소법을 이용한 셸의 공기 중 진동 및 방사소음 해석 (Analysis of Vibration and Radiated Noise of Circular Cylindrical Shell in the Air Using Spectral Finite Element Method and Boundary Element Method)

  • 이영구;홍석윤;송지훈
    • 한국소음진동공학회논문집
    • /
    • 제19권11호
    • /
    • pp.1192-1201
    • /
    • 2009
  • Analysis of the vibration characteristic for cylindrical shell is more complex than plates since the coupling effects are considered on three dimensions. Based on Love's equation, spectral finite element method(SFEM) is introduced to predict frequency response function of finite circular cylindrical shell in the air with simply supported - free boundary condition without simplifying the equation of motion. And for the radiated noise analysis of cylindrical shell, indirect boundary element method(BEM) is applied using out-of-plane displacements as an input from structural vibration analysis. Comparisons of the structural vibration results by the spectral finite element method and commercial code, NASTRAN(FEM based) are carried out. Likewise, for verification of radiated noise analysis results, commercial code, SYSNOISE(BEM based) are used.

축대칭 원통형 셸의 응력해석 (Stress Analysis of Axisymmetric Cylindrical Shell)

  • 최명수;여동준
    • 동력기계공학회지
    • /
    • 제16권6호
    • /
    • pp.45-51
    • /
    • 2012
  • In this paper, the algorithm for the static analysis of an axisymmetric cylindrical shell by using the finite element-transfer stiffness coefficient method (FE-TSCM) is suggested. TE-TSCM combining both the modeling procedure of the finite element method (FEM) and the transfer procedure of the transfer stiffness coefficient method (TSCM) has the advantages of FEM and TSCM. After computational programs are made by both FE-TSCM and FEM for the stress analysis of the axisymmetric cylindrical shell, we compare the numerical results by FE-TSCM with those of FEM for two computational models in order to confirm the trust of FE-TSCM.

ER 마운트 제어에 의한 원통쉘의 진동소음 해석 (Noise and Vibration Analysis of a cylindrical shell by controlling ER mount)

  • 정우진;정의봉;서영수;조현동
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.459-463
    • /
    • 2002
  • ER mount can be used instead of rubber mount in cylindrical shell to improve the vibration and noise performance. The noise radiated by cylindrical shell will be reduced by reducing the force transmitted to the cylindrical shell through ER mount. In this paper LQ control theory is used to reduce the transmitted force to the cylindrical shell. The finite element method of cylindrical shell is formulated by NASTRAN and its vibrating shape is calculated in frequency domain. The noise radiated from the cylindrical shell is calculated by the use of SYSNOISE, the boundary element CAE tool. The vibration of the cylindrical shell and radiated acoustic pressure is compared in case of both controlled and uncontrolled ER mount.

  • PDF