• Title/Summary/Keyword: Finite Field Multiplier

Search Result 109, Processing Time 0.029 seconds

A Finite field multiplying unit using Mastrovito's arhitecture

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.925-927
    • /
    • 2005
  • The study is about a finite field multiplying unit, which performs a calculation t-times as fast as the Mastrovito's multiplier architecture, suggesting and using the 2-times faster multiplier architecture. Former studies on finite field multiplication architecture includes the serial multiplication architecture, the array multiplication architecture, and the hybrid finite field multiplication architecture. Mastrovito's serial multiplication architecture has been regarded as the basic architecture for the finite field multiplication, and in order to exploit parallelism, as much resources were expensed to get as much speed in the finite field array multipliers. The array multiplication architecture has weakness in terms of area/performance ratio. In 1999, Parr has proposed the hybrid multipcliation architecture adopting benefits from both architectures. In the hybrid multiplication architecture, the main hardware frame is based on the Mastrovito's serial multiplication architecture with smaller 2-dimensional array multipliers as processing elements, so that its calculation speed is fairly fast costing intermediate resources. However, as the order of the finite field, complex integers instead of prime integers should be used, which means it cannot be used in the high-security applications. In this paper, we propose a different approach to devise a finite field multiplication architecture using Mastrovito's concepts.

  • PDF

Design of High-speed Digit Serial-Parallel Multiplier in Finite Field GF($2^m$) (Finite Field GF($2^m$)상의 Digit Serial-Parallel Multiplier 구현)

  • Choi, Won-Ho;Hong, Sung-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.928-931
    • /
    • 2003
  • This paper presents a digit-serial/parallel multiplier for finite fields GF(2m). The hardware requirements of the implemented multiplier are less than those of the existing multiplier of the same class, while processing time and area complexity. The implemented multiplier possesses the features of regularity and modularity. Thus, it is well suited to VLSI implementation. If the implemented digit-serial multiplier chooses the digit size D appropriately, it can meet the throughput requirement of a certain application with minimum hardware. The multipliers and squarers analyzed in this paper can be used efficiently for crypto processor in Elliptic Curve Cryptosystem.

  • PDF

3X Serial GF(2m) Multiplier on Polynomial Basis Finite Field (Polynomial basis 방식의 3배속 직렬 유한체 곱셈기)

  • 문상국
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.255-258
    • /
    • 2004
  • Efficient finite field operation in the elliptic curve (EC) public key cryptography algorithm, which attracts much of latest issues in the applications in information security, is very important. Traditional serial finite multipliers root from Mastrovito's serial multiplication architecture. In this paper, we adopt the polynomial basis and propose a new finite field multiplier, inducing numerical expressions which can be applied to exhibit 3 times as much performance as the Mastrovito's. We described the proposed multiplier with HDL to verify and evaluate as a proper hardware IP. HDL-implemented serial GF (Galois field) multiplier showed 3 times as fast speed as the traditional serial multiplier's adding only Partial-sum block in the hardware.

  • PDF

Design of a systolic radix-4 finite-field multiplier for the elliptic curve cryptosystem (타원곡선 암호를 위한 시스톨릭 Radix-4 유한체 곱셈기의 설계)

  • Kim, Ju-Young;Park, Tae-Geun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.695-698
    • /
    • 2005
  • The finite-field multiplication can be applied to the wide range of applications, such as signal processing on communication, cryptography, etc. However, an efficient algorithm and the hardware design are required since the finite-field multiplication takes much time to compute. In this paper, we propose a radix-4 systolic multiplier on $GF(2^m)$ with comparative area and performance. The algorithm of the proposed standard-basis multiplier is mathematically developed to map on low-cost systolic cell, so that the proposed systolic architecture is suitable for VLSI design. Compared to the bit-serial and digit-serial multipliers, the proposed multiplier shows relatively better performance with low cost. We design and synthesis $GF(2^{193})$ finite-field multiplier using Hynix $0.35{\mu}m$ standard cell library and the maximum clock frequency is 400MHz.

  • PDF

Design and Implementation of a Sequential Polynomial Basis Multiplier over GF(2m)

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2680-2700
    • /
    • 2017
  • Finite field arithmetic over GF($2^m$) is used in a variety of applications such as cryptography, coding theory, computer algebra. It is mainly used in various cryptographic algorithms such as the Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), Twofish etc. The multiplication in a finite field is considered as highly complex and resource consuming operation in such applications. Many algorithms and architectures are proposed in the literature to obtain efficient multiplication operation in both hardware and software. In this paper, a modified serial multiplication algorithm with interleaved modular reduction is proposed, which allows for an efficient realization of a sequential polynomial basis multiplier. The proposed sequential multiplier supports multiplication of any two arbitrary finite field elements over GF($2^m$) for generic irreducible polynomials, therefore made versatile. Estimation of area and time complexities of the proposed sequential multiplier is performed and comparison with existing sequential multipliers is presented. The proposed sequential multiplier achieves 50% reduction in area-delay product over the best of existing sequential multipliers for m = 163, indicating an efficient design in terms of both area and delay. The Application Specific Integrated Circuit (ASIC) and the Field Programmable Gate Array (FPGA) implementation results indicate a significantly less power-delay and area-delay products of the proposed sequential multiplier over existing multipliers.

Multiplexer-Based Finite Field Multiplier Using Redundant Basis (여분 기저를 이용한 멀티플렉서 기반의 유한체 곱셈기)

  • Kim, Kee-Won
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.6
    • /
    • pp.313-319
    • /
    • 2019
  • Finite field operations have played an important role in error correcting codes and cryptosystems. Recently, the necessity of efficient computation processing is increasing for security in cyber physics systems. Therefore, efficient implementation of finite field arithmetics is more urgently needed. These operations include addition, multiplication, division and inversion. Addition is very simple and can be implemented with XOR operation. The others are somewhat more complicated than addition. Among these operations, multiplication is the most important, since time-consuming operations, such as exponentiation, division, and computing multiplicative inverse, can be performed through iterative multiplications. In this paper, we propose a multiplexer based parallel computation algorithm that performs Montgomery multiplication over finite field using redundant basis. Then we propose an efficient multiplexer based semi-systolic multiplier over finite field using redundant basis. The proposed multiplier has less area-time (AT) complexity than related multipliers. In detail, the AT complexity of the proposed multiplier is improved by approximately 19% and 65% compared to the multipliers of Kim-Han and Choi-Lee, respectively. Therefore, our multiplier is suitable for VLSI implementation and can be easily applied as the basic building block for various applications.

Resource and Delay Efficient Polynomial Multiplier over Finite Fields GF (2m) (유한체상의 자원과 시간에 효율적인 다항식 곱셈기)

  • Lee, Keonjik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • Many cryptographic and error control coding algorithms rely on finite field GF(2m) arithmetic. Hardware implementation of these algorithms needs an efficient realization of finite field arithmetic operations. Finite field multiplication is complicated among the basic operations, and it is employed in field exponentiation and division operations. Various algorithms and architectures are proposed in the literature for hardware implementation of finite field multiplication to achieve a reduction in area and delay. In this paper, a low area and delay efficient semi-systolic multiplier over finite fields GF(2m) using the modified Montgomery modular multiplication (MMM) is presented. The least significant bit (LSB)-first multiplication and two-level parallel computing scheme are considered to improve the cell delay, latency, and area-time (AT) complexity. The proposed method has the features of regularity, modularity, and unidirectional data flow and offers a considerable improvement in AT complexity compared with related multipliers. The proposed multiplier can be used as a kernel circuit for exponentiation/division and multiplication.

3X Serial GF(2$^m$) Multiplier on Polynomial Basis

  • Moon, San-Gook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.928-930
    • /
    • 2005
  • With an increasing importance of the information security issues, the efficienct calculation process in terms of finite field level is becoming more important in the Elliptic curve cryptosystems. Serial multiplication architectures are based on the Mastrovito's serial multiplier structure. In this paper, we manipulate the numerical expressions so that we could suggest a 3-times as fast as (3x) the Mastrovito's multiplier using the polynomial basis. The architecture was implemented with HDL, to be evaluated and verified with EDA tools. The implemented 3x GF (Galois Field) multiplier showed 3 times calculation speed as fast as the Mastrovito's, only with the additional partial-sum generation processing unit.

  • PDF

Design of finite field arithmtic for EC-KCDSA (전자서명을 위한 ECC기반 유한체 산술 연산기 구현에 관한 연구)

  • 최경문;황정태;류상준;김영철
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.935-938
    • /
    • 2003
  • The performance of elliptic curve based on public key cryptosystems is mainly appointed by the efficiency of the underlying finite field arithmetic. This work describes a finite field multiplier and divider which is implemented using SystemC. Also this present an efficient hardware for performing the elliptic curve point multiplication using the polynomial basis representation. In order to improve the speed of the multiplier with as a little extra hardware as possible, adopted hybrid finite field multiplication and finite field divider.

  • PDF

A Design and Comparison of Finite Field Multipliers over GF($2^m$) (GF($2^m$) 상의 유한체 승산기 설계 및 비교)

  • 김재문;이만영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.28B no.10
    • /
    • pp.799-806
    • /
    • 1991
  • Utilizing dual basis, normal basis, and subfield representation, three different finite field multipliers are presented in this paper. First, we propose an extended dual basis multiplier based on Berlekamp's bit-serial multiplication algorithm. Second, a detailed explanation and design of the Massey-Omura multiplier based on a normal basis representation is described. Third, the multiplication algorithm over GF(($2^{n}$) utilizing subfield is proposed. Especially, three different multipliers are designed over the finite field GF(($2^{4}$) and the complexity of each multiplier is compared with that of others. As a result of comparison, we recognize that the extendd dual basis multiplier requires the smallest number of gates, whereas the subfield multiplier, due to its regularity, simplicity, and modularlity, is easier to implement than the others with respect to higher($m{\ge}8$) order and m/2 subfield order.

  • PDF