• Title/Summary/Keyword: Finite Feedback

Search Result 195, Processing Time 0.029 seconds

REDUCED-ORDER BASED DISTRIBUTED FEEDBACK CONTROL OF THE BENJAMIN-BONA-MAHONY-BURGERS EQUATION

  • Jia, Li-Jiao;Nam, Yun;Piao, Guang-Ri
    • East Asian mathematical journal
    • /
    • v.34 no.5
    • /
    • pp.661-681
    • /
    • 2018
  • In this paper, we discuss a reduced-order modeling for the Benjamin-Bona-Mahony-Burgers (BBMB) equation and its application to a distributed feedback control problem through the centroidal Voronoi tessellation (CVT). Spatial distcritization to the BBMB equation is based on the finite element method (FEM) using B-spline functions. To determine the basis elements for the approximating subspaces, we elucidate the CVT approaches to reduced-order bases with snapshots. For the purpose of comparison, a brief review of the proper orthogonal decomposition (POD) is provided and some numerical experiments implemented including full-order approximation, CVT based model, and POD based model. In the end, we apply CVT reduced-order modeling technique to a feedback control problem for the BBMB equation.

Optimization of Finite Element Retina by GA for Plant Growth Neuro Modeling

  • Murase, H.
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-29
    • /
    • 2000
  • The development of bio-response feedback control system known as the speaking plant approach has been a challenging task for plant production engineers and scientists. In order to achieve the aim of developing such a bio-response feedback control system, the primary concern should be to develop a practical non-invasive technique for monitoring plant growth. Those who are skilled in raising plants can sense whether their plants are under adequate water conditions or not, for example, by merely observing minor color and tone changes before the plants wilt. Consequently, using machine vision, it may be possible to recognize changes in indices that describe plant conditions based on the appearance of growing plants. The interpretation of image information of plants may be based on image features extracted from the original pictorial image. In this study, the performance of a finite element retina was optimized by a genetic algorithm. The optimized finite element retina was evaluated based on the performance of neural plant growth monitor that requires input data given by the finite element retina.

  • PDF

Simultaneous stabilization via static ouput feedback using an LMI method (LMI를 이용한 정적출력궤환 동시안정화 제어기 설계)

  • Kim, Seog-Joo;Cheon, Jong-Min;Lee, Jong-Moo;Kwon, Soon-Man
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.523-525
    • /
    • 2005
  • This paper deals with a linear matrix inequality (LMI) approach to the design of a static output feedback controller that simultaneously stabilizes a finite collection of linear time-invariant plants. Simultaneous stabilization by static ouput feedback is represented in terms of LMIs with a rank condition. An iterative penalty method is proposed to solve the rank-constrained LMI problem. Numerical experiments show the effectiveness of the proposed algorithm.

  • PDF

LQ Regulator of Systems with Multiple Time-Delays by Memoryless Feedback

  • Kubo, Tomohiro
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.373-378
    • /
    • 1998
  • A method to construct a memoryless feedback law for systems with multiple time-delays in the states is proposed. As a plant model, a differential-difference equation with multiple delayed terms is introduced, A stabilizability condition by memoryless feedback is presented. A feedback gain is calculated with a solution of a finite dimensional Riccati equation. It is shown that the resulting closed loop system is asymptotically stable, and moreover, it is a linear quadratic regulator for some cost functional. An alternative stabilizability condition which is easier to check is given.

  • PDF

Performance Advantage of Partial CoMP Transmission Using Finite Feedback (제한적 궤환량 사용 시 부분적 CoMP 전송의 성능 이득)

  • Park, Jae-Yong;Sung, Won-Jin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.14-20
    • /
    • 2012
  • CoMP(Coordinated Multi-Point transmission and reception) refers to a cooperative transmission strategy to control the interference from adjacent base stations in cellular mobile communication systems, which efficiently enhances the data throughput of the systems. As the number of the base stations participating in cooperative transmission increases, however, a larger amount of information exchange to carry the CSI(Channel State Information) of the mobile terminals is required. In this paper, we propose a partial CoMP transmission method for systems under the constraint of finite feedback information data. This method selects candidates of base stations which can provide high efficiency gain when they participate in the CoMP set. To achieve this, the cooperative base station combination is constructed by considering the preferred base stations of users. The cooperative base station combinations are dynamically applied since the preferred base station combinations of users may be different. We perform computer simulations to compare performance of the non-CoMP, full-CoMP and partial CoMP in terms of the average throughput using finite feedback and demonstrate the performance improvement of the proposed method.

Modeling and fast output sampling feedback control of a smart Timoshenko cantilever beam

  • Manjunath, T. C.;Bandyopadhyay, B.
    • Smart Structures and Systems
    • /
    • v.1 no.3
    • /
    • pp.283-308
    • /
    • 2005
  • This paper features about the modeling and design of a fast output sampling feedback controller for a smart Timoshenko beam system for a SISO case by considering the first 3 vibratory modes. The beam structure is modeled in state space form using FEM technique and the Timoshenko beam theory by dividing the beam into 4 finite elements and placing the piezoelectric sensor/actuator at one location as a collocated pair, i.e., as surface mounted sensor/actuator, say, at FE position 2. State space models are developed for various aspect ratios by considering the shear effects and the axial displacements. The effects of changing the aspect ratio on the master structure is observed and the performance of the designed FOS controller on the beam system is evaluated for vibration control.

Output Feedback Control of a Class of Nonlinear Systems with Sensor Noise Via Matrix Inequality Approach (행렬 부등식 접근법을 이용한 센서 노이즈 비선형 시스템의 출력궤환 제어)

  • Koo, Min-Sung;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.748-752
    • /
    • 2015
  • We present an output feedback controller for a class of nonlinear systems with uncertain nonlinearity and sensor noise. The sensor noise has both a finite constant component and a time-varying component such that its integral function is finite. The new design and analysis method is based on the matrix inequality approach. With our proposed controller, the states and output can be ultimately bounded even though the structure of nonlinearity is more general than that in the existing results.

APPROXIMATION SCHEME FOR A CONTROL SYSTEM

  • KANG, SUNG-KWON
    • Honam Mathematical Journal
    • /
    • v.16 no.1
    • /
    • pp.103-109
    • /
    • 1994
  • Piezoceramic patches as collocated actuator and sensors are widely used in mechanical control systems. An approximation scheme for computing feedback gains arising in heat flux stabilization problem with such control mechanism is introduced. The scheme is based on a finite element method and a variational approach.

  • PDF

Indirect Pole Placement Adaptive Controllers using a Nonlinear Feedback (비선형 궤환을 이용한 간접극배치 적응제어기)

  • 김홍필;양해원
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.11
    • /
    • pp.922-933
    • /
    • 1989
  • This paper deals with an indirect pole placement adaptive controller design problem for discrete-time plants with arbitrary zeros in the presence of unmodeled dynamics and/or disturbances. The plant and controller parameters are estimated by separate estimators. The nonlinear feedback is introduced so that the estimated plant has as high degree of controllability as possible. The nonlinear feedback will be used in a finite time, after which the control algorithm becomes a standard pole placement one.

  • PDF

Model updating using the feedback exciter (궤환 가진기를 이용한 모델 개선법)

  • 정훈상;박영진
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.1150-1155
    • /
    • 2001
  • The updating of the FE model to match it with the experimental results needs the modal information. There are two causes where this methodology is ill-equip to deal with; under-determined and ill-conditioning problem. In this research, the feedback exciter which uses the summation of the white noise and the signals from the measurement sensors multiplied with feedback gains is proposed. The new energy path generated by the feedback exciter changes the modal characteristics of the system and this additional modal information can solve the under-determined problem in the model updating. Through the proper selection of the exciter and sensor locations and the feedback gain, the eigenvalue sensitivity of the updating parameters which cause the ill-conditioning of the sensitivity matrix can be modified. This methodology does not require any additional equipments, makes the acquirement of the additional modal information easy and is robust to the measurement noise.

  • PDF