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Abstract

Piezoceramic patches as collocated actuator and sensors are widely used
in mechanical control systems. An approximation scheme for computing
feedback gains arising in heat flux stabilization problem with such control
mechanism is introduced. The scheme is based on a finite element method
and a variational approach.

1. Introduction

Piezoceramic patches as control actuator and sensors are widely used
in regulating mechanical systems (see, e.g., Balakrishnan [2]). In this
paper, we introduce an approximation scheme for computing feedback
gains for control system with unbounded observation. These feedback
gains produce control signals for stabilizing a given dynamical system.
We consider a linear regulator problem for stabilizing heat flux with a
certain degree of decay rate. Optimal control signals for stabilizing heat
flux with a certain desired exponential decay rate, say a > 0, are often
obtained from “a-shifted” control systems (see, Anderson and Moore [1],
and Gibson and Rosen [5]). An a-shifted heat flux control system can be
written as

(1.1)
g(t )= i(t + av(t '+ibv (t), 0<z<{t>0
6tv , T —-n:axzv )+ av(t,z) i(2)ui(t), z , ,

t=]

U(O, .’L’) = UO(x)s 0 Sz < ev
v(t,0) =v(t,0) =0, t>0,
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where & > 0 is the heat conductivity, o > 0 is a desired exponential decay
rate, £ > 0 is the length of the domain, b;, 1 <i < m, is the step function
of the form

, 7;-d; Lz <7 +4d,,
0, otherwise,

(12) () = {

Z; is the center of each piezoceramic patch, 2d; is the length of the patch,
u;(t) is the control signal acting on each b;(z) which is to be determined,
and [Z; — d; #; + d;] € [0,€], 1 < i < m. The unbounded observation
operator C considered in this paper is defined by

(1‘3) Cv() = (Cl(u)’CQ(U)? o+ ,cm(v)) € R™,
where ¢;(v) = f:"::" v'(z)de,1<i<m.

By standard semigroup techniques (see, e.g., Pazy [7]), the system (1.1)-
(1.3) can be written on the state space H = L?%(0,¢) as

%z(t) = (kA + al)z(t) + Bu(t), 2(0)= z,
y(t) = Cz(t),

where z(t) = z(t)(-) = v(t,:) € H, the operators A, B are defined by

(1.4)

(1.5) A¢ - ¢", Bu = Z b,'u,'

i=1

for all ¢ € dom(A) = H?(0,0) N H}(0,¢). Here, B € L(U,H), b; € H,
1<e<mU=R" u=(uy, ,un) €U, C € LW,Y) is defined by
equation (1.3), W = H}(0,¢), Y = R™. U is the control space, C is the
observation operator, and Y is the ouput space.

2. Linear Regulator Problem

Consider the following linear quadratic regulator problem:
(LQR): Find the optimal control u(-) € L?(0,00;U) that minimizes the
quadratic cost functional

@.1) J(u) = / T (O + lu()l?) de
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subject to the control system (1.4).
Consider the following eigenpairs of the operator kA + al:

kn?n? 2 . nm
(2.2) Aan =a — — and ¢q a(z) = \/;sm Vi

For small k > 0, f a > ag = 5,1'53, then there is at least one positive
eigenvalue. Without loss of generality, we assume that a > ag and let

(2.3) ng = max{n € N : A\qn = a — n?aqg > 0}.

We then have the following theorem. Since the proof is an application of
Burns and Kang [4], and Pritchard and Salamon [8], we only sketch the
proof.

THEOREM 1. Suppose that, for eachn = 1,2, ,ng,, there is at least
one ¢, 1 <i < m, such that

(2.4) ig,d,’¢X={§§:k=0,1,2,--~,2n—-1},

where the parameters ng, &;, d;, 1 < i < m, are given in equations (1.2)
and (2.3). Then the linear regulator problem (LQR) has a unique optimal
control u(-) € L*(0, 00;U) which is given by

(2.5) a(t) = —B*Iz(t), ¢>0,

where 2(t) is the corresponding optimal trajectory of the closed-loop con-
trol system (1.4) and I € L(H) is the unique nonnegative self-adjoint
operator satisfying the Riccati equation

(2.6) (kA +al)lz + (kA + al)z = IIBB*Ilz + C*Cz = 0

for all z € dom(.A), where the operators A, B and C are defined by equa-
tions (1.4)-(1.5), H = L*(0,¢), and U = R™. Moreover, the closed-loop
semigroup decays exponentially.

Sketch of the proof. Since kA + al is self-adjoint on the state space H,
the set of all eigenfunctions ¢, , forms a basis for H , and, hence, each

element z € H can be identified with the sequence {< 2,0a,n >H}InenN
and W = H{(0,¢) can be represented by

(2.7) W={:€H:) n|<z¢an>u* <o},

n=}
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where ¢, ,, are given by equation (2. ‘7) Also, the operators B and C can
be represented by

(2-8) Bu = {< btuu >U}nEN and Cz= ch < za¢a,n >H,
nz=l

where

(2.9)

2 v 2¢ : nﬂ'ii . mrd,-
sin sin R
nx ¢ ]
2 z; d:
Cn = (Cnhcrﬂv e ’Cnm) €EY=R", cn= 2\/:;(!03 nzx‘ sin nz ',
(1<i<m).

bn = (bn1sbnz, -+ ybam) EU =R™, by =

From equations (2.8) and (2.9), it is easy to see that

Sl < 3 (5) <00 3 Sl < > () s <

n=1 n=1

Hence, (kA + «l,B) is stabilizable if and only if b, # 0 for all n =
1,2,--- ,ny if and only if foreach n = 1,2, , n,, there exists at least one
t, 1 <1 < m,such that z,,d; # 5,;‘-, k=1,2,--- ,n-1. Also, (kA+al,C)
is detectable if and only if ¢, # 0 for all n = 1,2,--- ,n, if and only if
for each n = 1,2,--- ,n,, there exists at least one i, 1 < i < m, such that
gi# BBk —0,1,2, 0 n-1,di# £, j=0,1,2, ,n~ 1. Under
the assumption (2.4), both the stabilizability and detectability conditions
are satisfied. Thercfore, by the standard arguments of the linear regulator
theory with unbounded operators, the theorem holds.

REMARK. The conditions (2.4) are sufficient for the existence of the
optimal control #%(t). Necessary and sufficient conditions for the stabiliz-
ability and detectability of the control system (1.4) are given in the proof
of Theorem 1.

EXAMPLE. Let £ =1, k =0.001, m = 1, and a = 0.1. Then n, = 3.
Therefore, if the center # of the piezoceramic patch is not located at
g2, and its length 2d is less than 3+ then the control system (1.1)
can be exponentially stabilizable by the optimal feedback control u(t)

given by equation (2.5).
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3. Approximation scheme

In this section we consider a numerical approximation scheme for com-
puting the fecedback gain operator K = B*II in equation (2.5), where the
operator II satisfies the Riccati equation (2.6). Numerical experiments
where the observation operator C is bounded was reported in Burns and
Kang [3]. For the numerical results with similar unbounded observation
action as considered in this paper were reported in Burns and Kang [4].

For nonlinear control syntheses connected with a nonlinear system, see Ito
and Kang [6].

Throughout this section, we assume the length ¢ of the domain is 1.
For our finite dimensional approximation scheme, divide the unit interval
[0,1] into N + 1 equal subintervals [z, z;41], z; = —N—f;‘_—l-, :=0,1,---,N.
For each i, 1 <: < N, define the basis functions h,N (z) by

(N+1)(z—zin), zi-p<z<La;
(31) hfv(x) = -(N -+ 1)(1‘ — .’B,‘.H), Ty S T £ Tigl
0, otherwise.

Let HY denote the N-dimensional finite element space given by

N
(3.2) HN;-{ZZ,"C'N(x)2Z|‘ER,1:=:1,-..’N}

=1
and the approximate solution zV(¢,z) of z(¢,z) on H" be given by

N

(3.3) Nt,a) =) 2N ()Y (2)

=1

for some zN(t) e R,i=1,---,N.
On HV, the control system (1.4) can be approximated by the following
finite dimensional ODE system

LN} = [-rAN + oM (0) + BV (o),
(34) M0 = (=},
M@} =1eMEN W),
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where {zV(8)} = [z](t),- - . 2N (O], {uN(O)} = [ (#), -+ um(@)]T,

[AM] = [GM]7HAY), BN =[GMTBIY, €V = [ellmxn,

[G"] = g Inxn, [AN] = [a]vxn,  [BY] = [bij]nxm,

4 C_ .

sNFIy YT D -2(N +1), i=j,

N . . ~N . .
gij = g(—;vlq,—,-;, li—jl=1, a;=4 (N+1), [t —j]l=1,
0, otherwise, 0, otherwise,

for1<i<N,1<j <N,

. Z;+4d; Zj+d;
By = j WY (2)dz, N = / (hNY (2)dz,
I T

i—dj -

3j ~d;
for 1<:<N,1<j<m,

and {2{'} = [GN]7[[) zo(e)h](2)dz, -+, [ zo(x)hN(z)dz]T. Hence,
the corresponding finite dimensional Riccati equation for equation (2.6) is
given by

(3.5)

(= AN +aI™MIY + TV (kAN +aI™)-TVBN BV YT+ (CV)*CN =0

In general, equation (3.5) has 2V solutions. Among them, there is a unique
nonnegative self-adjoint solution. To find the unique solution, standard
solution methods for the Riccati equation such as Potter’s method (see,
e.g., Russell [9]) can be employed. The following is a brief sketch of Potter’s
method. The first step is to form 2N x 2N matrix

Ny _ [l=rAN +aINf [CNPCY)
(3'6) [M ] - [BN][BN}* '-—[—K.AN + O(IN] .
Next, find all eigenvalues and eigenvectors of M and form the matrix
[ZN] = [@F Q)] where the columns of [ZV] are eigenvectors of [My]
corresponding to the eigenvalues with positive real part. When eigenvalues
occur in complex conjugate pairs, so do the eigenvectors. In this case, the
real and imaginary part of the eigenvector each forms a column of [ZV].
Finally, the solution to the Riccati equation (3.5) is given by the formula
v = (QM)(QM).

The finite dimensional feedback operator [KV] given by

(3.7) [KN) = (B[],
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Using this feedback gain operator, the finite dimensional closed-loop con-
trol system becomes

DN W) = (=rA +aI¥] - BV (=M (1))
{z (0)} = {=0'}-

(3.8)

The solution of the closed-loop system (3.8) is exponentially stable. Hence,
by using the optimal control u¥(t) = —KNz¥(t), the unshifted control
system (i.e., @ = 0 in equation (1.1)) can be stabilized with exponential
decay a + € for some € > 0, where zV(t) is the corresponding closed-loop
trajectory.
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