Agri. & Biosys. Eng. Vol. 1(1):22-29(2000)

Optimization of Finite Element Retina by GA
for Plant Growth Neuro Modeling

H. Murase

Abstract: The development of bio-response feedback control system known as the speaking plant approach has
been a challenging task for plant production engineers and scientists. In order to achieve the aim of developing
such a bio-response feedback control system, the primary concern should be to develop a practical non-invasive
technique for monitoring plant growth. Those who are skilled in raising plants can sense whether their plants
are under adequate water conditions or not, for example, by merely observing minor color and tone changes
before the plants wilt. Consequently, using machine vision, it may be possible to recognize changes in indices
that describe plant conditions based on the appearance of growing plants. The interpretation of image
information of plants may be based on image features extracted from the original pictorial image.

In this study, the performance of a finite element retina was optimized by a genetic algorithm. The optimized
finite element retina was evaluated based on the performance of neural plant growth monitor that requires input

data given by the finite element retina.
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Introduction

In a protected plant production system such as a
plant factory, the control applications are limited to the
programmed fixed command controls for environmental
factors. The feedback control technology for green-
house environmental factors such as temperature,
humidity, radiation intensity, carbon dioxide concen-
tration and so forth has been developed and success-
fully implemented (Hashimoto and Nonami, 1992). The
development of bio-response feedback control system
has been a challenging task for plant production engi-
neers and scientists. Plant growth can be optimized or
controlled by adjusting the environmental factors. Fig.
1 shows the neural network adaptive control system
with a bio-response feedback loop containing another
neural network which converts the pictorial information
of plants into plant growth indices for evaluating the
plant growth status. The control element of this system
is the environment surrounding the plant consisting of
temperature, humidity, CO; concentration, light inten-
sity, and water potential of the root zone.

The practice of non-invasive measurements for plants
is essential for the bio-information feedback and/or
feed-forward control system of a plant factory.
Those who are skilled in raising plants can sense
whether their plants are under adequate water
conditions or not, for example, by merely observing
color and tone changes before the plants wilt. Hence,
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using machnie vision, it may be possible to recognize
changes in indices that describe plant conditions based
on the appearance of growing plants by machine
vision. The interpretation of image information of
plants may be based on image features extracted from
the original pictorial image. Changes in plant size due
to the growth reflect tonal variations over the plant
canopy. The tonal variation can be transformed into
pictorial information electronically in retrieval form.
The textural analysis can be considered as one of
applicable techniques for extracting image features
(Murase et al., 1994; Haralick et al. 1973). Some of
problems in implementing the textural analysis are that
there is too much flexibility to construct the co-
occurrence matrix and that the construction of the co-
occurrence matrix requires impractical long calculation
time. Broadly speaking, image features are any
extractable measurement of use. Examples of low-level
image features are pixel intensities or geometric
distances between pixels. Features may also result from
applying a feature extraction algorithm or operator to
the image data.

Murase et al. (1996) introduced the finite element
retina and made comparisons of performance of image
features extraction between the finite element and the
textural features. Murase and Nishiura (1996) reported
that the performance of the finite element retina can
be improved by arranging the location of choroidal
cells and the optic nerve cells and the distribution of
information conductivities in such a way that the
potential gradient over the retinal plane is steep.

In this study, the performance of the finite element
retina was optimized by a genetic algorithm. The
optimized finite element retina was evaluated based on
the performance of a neural plant growth monitor that
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Fig. 1 Finite element retina and neural network models in the bio-response feedback loop.

requires input data given by the finite element retina.
This is because a better finite element retina provides
better data in terms of resolution for the neural plant
growth monitor.

Materials and Methods
1. Finite Element Retina

The machine vision system for monitoring of plants
growth (fiz. 2) consist of the scene, vision hardware,
calibration processor, image feature extraction proce-
ssor, growth index evaluation processor and the control
system. The image of a plant canopy or a community
of plants is captured by the vision system. The raw
data of the calibrated image is fed into the finite
clement retina. The output from the finite element
retina is then directed to the neural plant growth
model. Because of the large number of parameter
involved in evaluating the plant growth, a neural
network is used. The current growth indices of plants
are compared with the reference input (set value) of
growth indices. Then, deviation from normal appea-
rance is calculated.

The basic mechanism of Finite Element Retina
proposed by Murase et al. (1995) for generating image
features is the conversion of incident light intensity
distribution projected over the area comprising of finite
element input nodes into a vector form of image
features distributed over the output nodes. Fig. 3 is a
conceptual representation of the finite element retina.
The pictorial image of the object is projected over a
finite element grid (meshed area) which is considered
as retina. The boundary of the finite element grid
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Fig. 2 Process of machine vision monitoring of
plant growth.

where the outputs are retrieved serves as the optic
nerve of a human eye. The other part of the boundary
is a choroid.

Fig. 4 shows a schematic representation of the finite
element retina that converts pictorial image into
non-geometric image features numerically. This non
geometric image feature can be calculated based on the
differences of gray level between every input node of
the finite element grid. Each input node serves as a
photosensitive receptor (retinal cells). In practice, for
instance, signals transferred from sensing elements of
CCD area array should be given to these input nodes.
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Fig. 3 Apparent function of finite element retina.
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Fig. 4 Schematic representation of the finite element
retina.

Nodal values of the output nodes (Optic nerve cells)
become the finite element features. Other nodes are
boundary nodes (Choroidal cells) on which boundary
conditions are specified.

The algorithm to relate input and output signals of
the finite element retina can be a linear mapping as
described by a linear finite element equation. In this
research work, a 2-D Poisson's equation was utilized
as a governing equation given by eq.(1). The finite
element equation used here is expressed as eq.(2).
The basic mechanism of the finite element image
processing grid for generating image features is the
conversion of incident light intensity distribution
projected over the area comprising of finite element
input nodes into a vector form of image features
distributed over the output nodes.

o’ ¢’

kx + Ky =Q (D
% a’

Ky : information conductivity in x direction

K, : information conductivity in y direction
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[K]': inverse matrix of stiffness matrix
{A} : input vector
{1} : output vector (image features)

2. Optimization of Finite Element Retina

The performance or specification of the finite
element retina can be set by determining K values and
the node arrangements. The choice of K values and
the node arrangements determines the sensitivity of the
retina. The K wvalue is usually uniform and taken as
unity. The number of nodes depends on allowable
calculation capacity. The arrangement of nodes is
arbitrary. However, some trial procedure has been
required to optimize the retinal performance .

Structure of Finite Element Retina

Fig. 5 illustrates the structure of a finite element
retina which was subjected to the optimization. The
sensing receptor is a five by five finite element nodal
array. The sensing receptor consists of 25 input nodes.
The receptor is surrounded by 24 boundary cells or
nodes. Some of the boundary cells are designated as
choroidal <cells in the optimization process. The
remaining cells can be used as work cells or output
nodes. In this study, the K value was taken as unity.

Boundary Nodes

Input nodal array

Fig. 5 The finite element retina used for optimiza-
tion.



Optimization by a Genetic Algorithm

In this study, the Simple Genetic Algorithm (SGA)
was used. The SGA starts by randomly generating a
population of N individuals (chromosomes), that is,
individual solutions. These individuals are evaluated for
their fitness. Individuals with higher fitness scores are
selected, with replacement, to create a mating pool of
size N. This method of selection is called fitness
proportionate reproduction. The genetic operators of
crossover and mutation are applied at this stage in a
probabilistic manner which results in some individuals
from the mating pool to reproduce. The assumption
here is that each pair of parents produces only one
pair of offspring through the crossover operation.
Now the population pool contains some individuals
who never got a chance to reproduce and the offspring
of those who got a chance to reproduce. The
procedure continues until a suitable termination
condition is satisfied. In this study, N was set at 50.

The performance of the finite element retina was
optimized based on its sensitivity. The sensitivity can
be evaluated by the ratio of the change in output level
of the finite element retina to the change in input
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Fig. 6 An example of chromosome specifying the
finite element retina.
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level of the retina. The fitness of a chromosome is
evaluated for higher sensitivity. The number of work
cells (output nodes) was limited to 3 out of 24
boundary cells in this study. The number of choroidal
cells (up to 21 cells) and their locations together with
the locations of 3 work cells were subjected to the
optimization. The remaining boundary cells were left
as general nerve cells. Fig. 6 illustrates the
chromosome consisting of 3 five bits genes for work
cell locations and 6 four bits genes for choroidal cell
locations and one additional gene for the fitness level.
The crossover operates only on the four bits genes
except genes where the work cells are located.

Input Data Preparation for the Finite Element
Retina Optimization

A growth of a community of radish sprouts was
observed. The change of pictorial image due to the
growth was recorded on a video tape. A digital still
image was captured at a time from the video at
intervals of 6 hours from seeding to 96 hours after
seeding. Seventeen digital still images were obtained.
Five out of 17 digital still images of the community
of radish sprouts were processed to obtain input data
for the finite element retina to be optimized as shown
in fig. 7. The finite element features given by the
three work cells of each finite element retina
characterized by the corresponding chromosome in the
GA optimization process were calculated using these
five digital still images.

Fig. 8 illustrates the procedure to prepare input data
for the finite element retina. The captured digital still
image was divided into 5 X 5 segments. The image
dimensions of each segment were 25 X 30 pixels.
The average value of brightness (Y signal) of each
segment was calculated. The calculate average
brightness values made 25 input data which were fed
into the finite element input nodes.

Evaluation of Optimized Finite Element Retina
Neural Network Model

A three-layered neural network was used to relate
the growth of radish sprouts and the output of finite
element features. The three-layered neural network with

72 hours 96 hours

Time after seeding

Fig. 7 Digital images showing changes in appearance of a community of radish sprouts.
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5 pixels|

Fig. 8 Each captured image was divided into 25
segments. Average brightness of each segment was
used for the input data for the finite element
retina.
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Fig. 9 Neural plant growth model.

the sigmoid non-linearity contains 6 wunits in the
middle layer that makes the total number of units 10
as shown in fig. 9. The trained neural network is
expected to estimate the growth stage of the
community of radish sprouts based on the input data
given by the finite element retina. A single output unit
was provided for the hours after seeding. This neural
network serves as a data convertor that transforms the
three entities of the finite element features extracted
from the pictorial image of plants into the growth
stage of plants in terms of hours after seeding. The
Kalman neuron training algorithm was applied for this
problem.

Kalman Neuro Computing
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The leaming performance of neural network is of
extreme importance for the users especially in a case
where the training data contain significant amount of
noise in measurement. The kalman filter can be used
as a learning algorithm for the neural network. Fig. 10
illustrates an example of a three layered neural
network structure. The mathematical explanation for the
process of signal transfer in the network may help
understand the mechanism of layered neural networks
(Murase et al., 1991). The input T can be expressed
in a vector form as T={{,f,....,l.}. I-th component of
the inputs 7, i.e., 4 that comes out from the input unit
i is transferred to a hidden unit j through the synapse
weight #,. Since each hidden unit has a summation
function operating on inputs, the total input u; received
by the hidden unit becomes

u = > Wit A3)

il

Sy S, Ss

output
QUTPUT unit 1 output
EDGE unit 3
LAYER 3

v11

Fig. 10 Three-layered neural network structure.

The hidden unit / has also a transfer function that
performs nonlinear transformation on the total input u;
and then gives an output which becomes the next
input fed into the output unit j, which has also a
summation function, throughout the synapse weight Vj;

The total input received by the output unit j

becomes directly its output s; expressed as

5= 2 Vi f () 4
il
The outputs can be given in a vector form as
S={s1,s3......5m}. After all, what this neural network
does is to perform a nonlinear transformation on T
as expressed in the following equation.
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Once those nonlinear functions (transfer functions) of
hidden units are specified, the behavior of the network
can be identified by determining all synapse weights
contained in the network. The sigmoid function is
often employed for the transfer function. The learning
of neural network is a procedure to determine optimal
values of synapse weights by adjusting them step by
step using known input data and their associated
output data called training data. The most common
algorithm for this learning procedure is the back
propagation. The Kalman filter can also be used as a
training algorithm. In this study, the Kalman filter
algorithm was employed due to its quicker converging
characteristics than any other algorithm (Murase, 1991).
The state equation and the observation equation for the
neural network can be described by the following
forms:
1) State equation
be-r = [N{xh

{x}: synapse weight to be determined

©
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[1] : unit matrix
k : discrete time
2) Observation equation
Ohe = {A({x})}
{¥}: unit values
[h] : observation matrix

9

The discrete time can be taken as the iterative step,
i.e., learning iteration. The [/] in eq. 6 is due to that
synapse weight in this problem are independent of
time. Eq. 7 is considered as a nonlinear observation
equation that can be expressed in simpler form using
the sensitivity matrix [H] as given by eqgs. 8, 9, and
10.

{p}x = [Hl{x}x (3)
where,

{phe = {q}-{F O+ TH Ol Xk ®
[H,J] = aF,/an (10)

{g}: training data
X: synapse weights estimated at one step prior to
the present iteration.
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Fig. 11 Comparison of finite element features obtained by the optimized retina (a) and untreated retina (b).
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The observation vector {p} and matrix [H] can be
evaluated using a priori information.

Training Data for the Finite Element Retina Evalua-
tion

Two sets of training data were provided to make a
comparison between an optimized finite element retina
and an untreated finite element retina. One set of
training data was obtained from an untreated retina and
the other set of data from an optimized retina which
is more sensitive to the change in the appearance of
the growing plants through its digital image. During
the 96-hour video taping, 17 image frames from 0 to
96 hours at 6-hour intervals were taken as described in
the previous section. Three data obtained at 30 hours,
60 hours and 90 hours after seeding in each set of
training data were left to be use for checking. The
remaining 14 data of each data set were used for the
neuron training.

Results and Discussion

After 52 iteration, the GA optimization converged to
the best fitness. The structure of the optimized finite
element retina and the variations of three image
features (outputs) for the plant growth given by the
optimized retina are shown in fig. 11(a). fig. 11(b)
shows the structure of the finite element retina with
the worst fitness chosen from chromosomes generated
randomly at the initiation of the GA optimization and
the plot of outputs versus the growth stage by time
using the untreated retina. Less numbers of choroidal
cell are allocated for the optimized retina. The plots in
fig. 11 indicate that the optimized retina is much more
sensitive to the changes in the appearance of growing
plants through their digital images.

The learning process using the training data given
by the optimized retina was terminated when the root
mean squared error of outputs reached 3.12 X107 after
500 times of iterative calculations. The root mean
squared error of outputs converged to 9.84 X107 for
the untreated finite element retina also after 500 times
of iterative calculations. The lower leaming level
attained by the training data given by the untreated
finite element retina was probably due to the fact that
the training data contained many output data of the
untreated retina which remain almost unaffected by the
variation of input data (digital image of plants).
table 1 indicates satisfactory agreement of the
estimated growth stage of radish sprouts with the
actual measured data which was obtained by the neural
plant growth model trained for the optimized finite
element retina. The untreated finite element retina, in
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turn, gave unacceptable results as indicated in table 1.

Table 1 Comparison of estimated and actural
values of plant growth stage indicated by time after
seeding (hrs)

Estimates
Actual
Optimized Untreated
30 28.1 16.3
60 60.7 55.9
90 91.0 92.9
Conclusions
Genetic  algorithms can effectively optimize the

performance of a finite element retina by improving
the retinal sensitivity for tonal variation of digital
image. It was found that an optimized finite element
retina provides training data for building a better
neural plant growth model than untreated finite element
retina. The developed neural plant growth model is
capable of estimating the plant growth stage based on
time.

Acknowledgement
A research plant for extending this study has been
accepted for a grant of the Ministry of Education,
Science and Culture of Japan by a Grant-in-Aid for

Developmental  Scientific = Research  (Project No.
06556042).

References
Haralick, R. M., K. Shaanmugan and I. Dinstein.

1973. Textural features for image classification.
IEEE Trans. on Systems, Man, and Cybemetics,
Vol. SMC-3,6,610-621.

Hashimoto, Y. and N. Honami. 1992. Measurement
and control in transplant production systems.
In:Transplant Production Systems. (K. Kurata and
T. Kozai, Ed) pp 117-136. Kluwer Academic
Publishers, Dordrecht, The Netherlands.

Murase, H., S. Koyama, N. Honami and T. Kuwabara.
1991. Kalman filter neuron training. Bull. Univ.
Osaka Pref. Ser. B. 43,91-101.

Murase, H., N. Honami and Y. Nishiura. 1994. Image
information feedback using textural features for
plant growth control. Proc. of the First Asian
Control Conference, Tokyo, July 27-30, 1994. Vol.
3, pp. 17-20.

Murase, H., Y. Nishiura and K. Mitani. 1995. Environ-



mental control strategies based on plant responses
using intelligent machine vision technique. Proc. of
the First IFAC/CIGR/EURAGENG/ISHS workshop
on Control Applications in Post-Harvest and
Processing Technology, Ostend, Belgium, June 1-2,
1995. pp 143-149.

Murase, H., Y. Nishiura and T. Suzuki. 1996. Extrac-

Vol. 1(1):22-29(2000)

tion of non-parametric image features for plant
growth control. Proc. of The 13th World Congress
of IFAC, San Francisco, CA, USA. Vol. B. pp.
381-386.

Murase, H. and Y. Nishiura 1996. Finite element

retina for plant growth monitoring. Acta Horti-
culturae, Accepted for publication.

29



