• Title/Summary/Keyword: Finite Element Method(F.E.M)

Search Result 114, Processing Time 0.027 seconds

The Stress Analysis of the Bellows Joint by the Finite Element Method (유한 요소법을 이용한 Bellows Joint의 응력해석)

  • 이완익;김태완
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.9 no.4
    • /
    • pp.61-68
    • /
    • 1987
  • The Bellows Joint which was used as a absorber or safety equipment to prevent the deformation or fracture of a structure, have been analyzed by the F.E.M using axi-symmetric conical frustum element. Using the F.E.M the general behavior of Bellows Joint corrugation can be investigated easily, and the stability of the analysis be guaranteed. In annular type corrugation, the F.E.M results were agreed with those of other theoretical analyses, but in the U type corrugation, the F.E.M results were more acceptable than those of others.

  • PDF

Temperature Analysis for Carbon Steel at Quenching Process by F. E. M.(Finite Element Method) (탄소강의 퀜칭과정에서 유한요소법을 이용한 온도해석)

  • Kim, Ok Sam;Cho, Eui Il;Shin, Young Woo
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.2
    • /
    • pp.103-110
    • /
    • 1994
  • It is well-known that the analysis of temperature distribution is substantilly important in optimal design of quenching process. The unsteady state temperature gradients generated during the quenching process were numerically calculated by the Finite Element Method(F. E. M.). Formulations of F. E. M. based weighted residural method were presented for the analysis of the two dimensional heat conduction problem. In the process of calculation, the temperature dependency of physical properties of the material was in consideration. At early stage of the quenching process, the abrupt temperature gradient has been shown in the surface of the carbon steel(SM45C).

  • PDF

Transient Characteristic Analysis of Quick Response Extraction Type Superconducting Generator by Finite Element Method (유한 요소법에 의한 속응 여자 초전도 발전기의 과도 특성 해석)

  • Kim, Jeong-Cheol;Hahn, Sung-Chin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.2 no.2
    • /
    • pp.26-31
    • /
    • 2000
  • This paper deals with finite element analysis of 2GVA superconducting generator which has slitted electrothermal shield in d-axis (SES). Three phase fault is considered torque of the S.C.G. Using the result, generator parameters are calculated by F.E.M. The results are compared with superconducting generator having conventional electrothermal shield (CES). The result shows that quick response excitation could be applied to superconducting generator with slitted electrothermal shield.

  • PDF

Direct determination of influence lines and surfaces by F.E.M.

  • Orakdogen, Engin;Girgin, Konuralp
    • Structural Engineering and Mechanics
    • /
    • v.20 no.3
    • /
    • pp.279-292
    • /
    • 2005
  • In this study, element loading matrices are defined for static application of classical M$\ddot{u}$ller-Breslau principle to finite element method. The loading matrices are derived from existing element matrices using Betti's law and known governing equations of F.E.M. Thus, the ordinates of influence lines and influence surfaces may be easily obtained from structural analysis for the loading matrices derived from governing equations, instead of through introduced unit force or displacement techniques. An algorithm for a computer program and comparative numerical examples are also presented to illustrate the procedure for determination of influence line and surface ordinates.

Finite element analysis or permanent magnet alternator with nonlinear load (비선형 부하를 갖는 영구자석 발전기의 유한요소 해석)

  • Hong, Ki-Rann;Hahn, Song-Yop
    • Proceedings of the KIEE Conference
    • /
    • 1989.11a
    • /
    • pp.53-57
    • /
    • 1989
  • Until now, method of equivalent circuit is generally used in analyzing the characteristic of the synchronous alternator. But this method can't apply when loads are connected to alternator. In this paper, we analyzed the load characteristic of the synchronous alternator with permanant magnet using 2-dimensional finite element method having voltage source. The loads of a alternator are battary and diodes which are used to rectify. also, we used half periodic boundary condition in the F.E.M calculation

  • PDF

Analysis of Stiffened Plate by Finite Strip Method (유한대판법(有限帶板法)에 의한 보강(補强)된 평판(平板)의 해석(解析))

  • S.J.,Yim;B.W.,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.16 no.3
    • /
    • pp.1-8
    • /
    • 1979
  • Various approaches to the analysis of stiffened plating in ship structures have been proposed by a number of researchers. Among them, the finite element method is known to be the most powerful method. However, for many parts of ship's structure having simple geometry and boundary conditions, the F.E.M. is often extravagant and unnecessary. In this paper, the authors have attempted to introduce the finite strip method which was proposed by Y.K. Cheung to avoid the difficulties involved in F.E.M. The results of calculations on the displacements and stresses in various plates with or without stiffeners were satisfactory, which shows the F.S.M. is useful for structural analysis of ship's plating.

  • PDF

The Analysis of Hatch Corner by the Coupling Method of F.E.M and B.E.M (유한요소법과 경계요소법의 결합해법에 의한 HATCH CORNER 해석)

  • Chang-Yull,Kim;Soo-Lyong,Lee;Jung-Sin,Che
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.3
    • /
    • pp.25-34
    • /
    • 1987
  • Whereas the finite element method is well established today, the boundary element method is a fairly recent development. Both are general-purpose methods for the solution of various structural analysis problem. The B.E.M has several potential advantages relative to the F.E.M. One of them is that the number of unknowns in algebraic system obtained by discretization is proportional to the number of boundary nodes. Anothor advantage is the ease of discretization and input data preparation. However, the B.E.M. always leads to a fully populated and unsymmetric system of equations. Even though the number of degree-of-freedom is reduced as compared with F.E.M, since nodes exist on the boundary only in the B.E.M, to follow that the effort to solve the equations can be greater. It has been shown also that the time spent in setting up the coefficient matrix is a significant and can, in some cases, be greater than the time required to solve the equation. Thus, one can naturally consider the idea that two methods should be coupled, then the advantages of both methods can be taken. And further, by using this coupling method the HATCH CORNER was analyzed to give initial design data.

  • PDF

Analysis of Interior-Type Permanent Magnet Synchronous Motor Using Finite Element Method (유한 요소법에 의한 매입형 영구 자석 동기 전동기의 특성 해석)

  • Kim, Jin-Boo
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.723-734
    • /
    • 1992
  • In this paper, the characteristics of IPMSM(Interior-type Permanent Magnet Synchronous Motor) are simulated using 2-D. finite element method. This paper deals with the following characteristics : air gap flux density considering skew, back e.m.f., torque and inductance. Back e.m.f. is calculated using the flux obtained from the vector potential of FEM solution. Torque is calculated using improved Maxwell stress tensor method and current angle which is obtained from the controller. Direct axis inductance and quadrature axis inductance are also calculated using energy perturbation method. Computed results are found in satisfactory agreement with experimental ones. This method also can be applied for the computation and analysis of the characteristics of SPMSM, current-excited synchronous motor and reluctance motor.

Strenth analysis gear by finite element method (유한요소법에 의한 전위치차의 강도해석)

  • 조선휘;박종근
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.3 no.2
    • /
    • pp.27-33
    • /
    • 1981
  • In the paper, it was attempted to verify how the strength around fillet area of shifted gear would be affected by variables such as number of teeth, shifted value, and diametral pitch. Thereafter, the Lewis' tooth factor of the shifted gear was computed in terms of previously mentioned variables in order to observe the characteristics of stress change related from tooth factor and tooth number with the parameter of shifted values and diametral pitches. From the results of quasi-theoretical values by Finite Element Method(F.E.M.)and experimental values through the photo-elastic tests, the followings were identified. The more the number of gear teeth increased, the more the profile of the tooth became close to that of rack, and accordingly the stresses in the fillet area decreased significantly in certain range. Furthermore, as the shifted value and pressure angle increase the stresses tend decrease. Moreover, the stresses analyzed by F.E.M. in the filled area became around 1.22 times larger than the stresses computed by Lewis' form factor, and this is supposed as on influence of the stress concentration in fillet area.

  • PDF

The Values of J-integral and Shapes of Plastic Zone Near a Crack Tip of Cracked Panels by the $\rho$-Version of F.E.M. ($\rho$-Version 유한요소법에 의한 균열판의 소성역 형상과 J-적분값 산정)

  • 홍종현;우광성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.42-49
    • /
    • 1999
  • Because the linear elastic tincture analysis has been proved to be insufficient in predicting the failure of cracked bodies, in recent years, a number of fracture concepts have been studied which remain applicable in the presence of large-scale plasticity near a crack tip. This work thereby presents a new finite element model, as accurate as possible, to analyze plane problems of ductile fracture under large-scale yielding conditions. Based on the incremental theory of plasticity, the p-version finite element analysis is employed to account for the values of J-integral, the most dominant fracture parameter, and the shape of plastic zone near a crack tip by using the J-integral method and equivalent domain integral method. The numerical results by the proposed model are compared with the theoretical solutions in literatures and the numerical solutions by the i,-version of F.E.M.

  • PDF