• 제목/요약/키워드: Finite Difference Scheme

검색결과 521건 처리시간 0.024초

Extremely Low Numerical Dispersion FDTD Method Based on H(2, 4) Scheme for Lossy Material

  • Oh, Il-Young;Hong, Yongjun;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • 제13권3호
    • /
    • pp.158-164
    • /
    • 2013
  • This paper expands a previously proposed optimized higher order (2, 4) finite-difference time-domain scheme (H(2, 4) scheme) for use with lossy material. A low dispersion error is obtained by introducing a weighting factor and two scaling factors. The weighting factor creates isotropic dispersion, and the two scaling factors dramatically reduce the numerical dispersion error at an operating frequency. In addition, the results confirm that the proposed scheme performs better than the H(2, 4) scheme for wideband analysis. Lastly, the validity of the proposed scheme is verified by calculating a scattering problem of a lossy circular dielectric cylinder.

2D Crank-Nicolson FDTD Method Based on Isotropic-Dispersion Finite Difference Equation for Lossy Media (손실 매질에 대한 Isotropic-Dispersion 유한 차분식의 2D Crank-Nicolson FDTD 기법)

  • Kim, Hyun;Koh, Il-Suek;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • 제21권7호
    • /
    • pp.805-814
    • /
    • 2010
  • The Crank-Nicolson isotropic-dispersion finite difference time domain(CN ID-FDTD) scheme is proposed based on isotropic-dispersion finite difference(ID-FD) $equation^{[1],[2]}$. The dispersion relation of CN ID-FDTD is derived for lossy media by solving the eigenvalue problem of iteration matrix in spatial spectral domain, in addition, the weighting factors and scaling factors of the CN ID-FDTD scheme are presented for low dispersion error. The CN ID-FDTD scheme makes the dispersion error drastically reduced and shows accurate numerical results compared to the conventional Crank-Nicolson FDTD method.

EVALUATION OF NUMERICAL APPROXIMATIONS OF CONVECTION FLUX IN UNSTRUCTURED CELL-CENTERED METHOD (비정렬 셀 중심 방법에서 대류플럭스의 수치근사벙법 평가)

  • Myong H.K.
    • Journal of computational fluids engineering
    • /
    • 제11권1호
    • /
    • pp.36-42
    • /
    • 2006
  • The existing numerical approximations of convection flux, especially the spatial higher-order difference schemes, in unstructured cell-centered finite volume methods are examined in detail with each other and evaluated with respect to the accuracy through their application to a 2-D benchmark problem. Six higher-order schemes are examined, which include two second-order upwind schemes, two central difference schemes and two hybrid schemes. It is found that the 2nd-order upwind scheme by Mathur and Murthy(1997) and the central difference scheme by Demirdzic and Muzaferija(1995) have more accurate prediction performance than the other higher-order schemes used in unstructured cell-centered finite volume methods.

NUMERICAL SIMULATION OF COASTAL INUNDATION OVER DISCONTINUOUS TOPOGRAPHY

  • Yoon, Sung-Bum;Cho, Ji-Hoon
    • Water Engineering Research
    • /
    • 제2권2호
    • /
    • pp.75-87
    • /
    • 2001
  • A new moving boundary technique for leap-frog finite difference numerical mode is proposed for the resonable simulation of coastal inundation over discontinuous topography. The new scheme improves the moving boundary technique developed by Imamura(1996). The present scheme is tested using the analytical solution of Thacker(1981) for the case of free oscillation with moving boundary in a parabolic bowl. Finally, a numerical simulation is conducted for the flooding over a tidal barrier constructed on a simple concave geometry. A general feature of inundation over a discontinuous topography is well described by the numerical model.

  • PDF

A PREDICTOR-CORRECTOR SCHEME FOR THE NUMERICAL SOLUTION OF THE BOUSSINESQ EQUATION

  • Ismail, M.S.;Bratsos, A.G.
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.11-27
    • /
    • 2003
  • A fourth order in time and second order in space scheme using a finite-difference method is developed for the non-linear Boussinesq equation. For the solution of the resulting non-linear system a predictor-corrector pair is proposed. The method is analyzed for local truncation error and stability. The results of a number of numerical experiments for both the single and the double-soliton waves are given.

A NUMERICAL METHOD FOR SINGULARLY PERTURBED SYSTEM OF SECOND ORDER ORDINARY DIFFERENTIAL EQUATIONS OF CONVECTION DIFFUSION TYPE WITH A DISCONTINUOUS SOURCE TERM

  • Tamilselvan, A.;Ramanujam, N.
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1279-1292
    • /
    • 2009
  • In this paper, a numerical method that uses standard finite difference scheme defined on Shishkin mesh for a weakly coupled system of two singularly perturbed convection-diffusion second order ordinary differential equations with a discontinuous source term is presented. An error estimate is derived to show that the method is uniformly convergent with respect to the singular perturbation parameter. Numerical results are presented to illustrate the theoretical results.

  • PDF

A Study on Natural Convection from Two Cylinders in a Cavity

  • Mochimaru Yoshihiro;Bae Myung-Whan
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1773-1778
    • /
    • 2006
  • Steady-state natural convection heat transfer characteristics from cylinders in a multiply-connected bounded region are clarified. A spectral finite difference scheme (spectral decomposition of the system of partial differential equations, semi-implicit time integration) is applied in numerical analysis, with a boundary-fitted conformal coordinate system through a Jacobian elliptic function with a successive transformation to formulate a system of governing equations in terms of a stream function, vorticity and temperature. Multiplicity of the domain is expressed explicitly.

NUMERICAL METHOD FOR A SYSTEM OF SINGULARLY PERTURBED CONVECTION DIFFUSION EQUATIONS WITH INTEGRAL BOUNDARY CONDITIONS

  • Raja, Velusamy;Tamilselvan, Ayyadurai
    • Communications of the Korean Mathematical Society
    • /
    • 제34권3호
    • /
    • pp.1015-1027
    • /
    • 2019
  • A class of systems of singularly perturbed convection diffusion type equations with integral boundary conditions is considered. A numerical method based on a finite difference scheme on a Shishkin mesh is presented. The suggested method is of almost first order convergence. An error estimate is derived in the discrete maximum norm. Numerical examples are presented to validate the theoretical estimates.

NUMERICAL METHOD FOR A SYSTEM OF CAPUTO FRACTIONAL DIFFERENTIAL EQUATIONS WITH NON-LOCAL BOUNDARY CONDITIONS

  • S. Joe Christin Mary;Ayyadurai Tamilselvan
    • Communications of the Korean Mathematical Society
    • /
    • 제38권1호
    • /
    • pp.281-298
    • /
    • 2023
  • A class of systems of Caputo fractional differential equations with integral boundary conditions is considered. A numerical method based on a finite difference scheme on a uniform mesh is proposed. Supremum norm is used to derive an error estimate which is of order κ − 1, 1 < κ < 2. Numerical examples are given which validate our theoretical results.

Simulation of Three-Dimensional Turbulent Flows around an Ahmed Body-Evaluation of Finite Differencing Schemes- (Ahmed body 주위의 3차원 난류유동 해석-유한차분도식의 평가-)

  • Myeong, Hyeon-Guk;Park, Hui-Gyeong;Jin, Eun-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제20권11호
    • /
    • pp.3589-3597
    • /
    • 1996
  • The Reynolds-averaged Navier-Stokes equations with the equations of the k-.epsilon. turbulence model are solved numerically in a general curvilinear system for a three-dimensional turbulent flow around an Ahmed body. The simulation is especially aimed at the evaluation of three finite differencing schemes for the convection term, which include the upwind differencing scheme(UDS), the second order upwind differencing scheme(SOU scheme) and the QUICK scheme. The drag coefficient, the velocity and pressure fields are found to be changed considerably with the adopted finite differencing schemes. It is clearly demonstrated that the large difference between computation and experiment in the drag coefficient is due to relatively high predicted values of pressure drag from both front part and vertical rear end base. The results also show that the simulation with the QUICK or SOU scheme predicts fairly well the flow field and gives more accurate drag coefficient than other finite differencing scheme.