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Extremely Low Numerical Dispersion FDTD Method Based on 
H(2, 4) Scheme for Lossy Material 
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Abstract 

This paper expands a previously proposed optimized higher order (2, 4) finite-difference time-domain scheme (H(2, 
4) scheme) for use with lossy material. A low dispersion error is obtained by introducing a weighting factor and two 
scaling factors. The weighting factor creates isotropic dispersion, and the two scaling factors dramatically reduce the 
numerical dispersion error at an operating frequency. In addition, the results confirm that the proposed scheme per-
forms better than the H(2, 4) scheme for wideband analysis. Lastly, the validity of the proposed scheme is verified 
by calculating a scattering problem of a lossy circular dielectric cylinder.
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Ⅰ. Introduction

The finite-difference time-domain (FDTD) method is an 
elegant way to calculate various electromagnetic pheno- 
mena due to its strengths of easy implementation and low 
computational quantity [1-4]. However, the standard FDTD 
method (the Yee scheme [5]) has a relatively large num-
ber of numerical dispersion errors when compared to other 
numerical analysis methods, such as the moment method 
and the finite element method. Many researchers have 
studied low dispersion algorithms in an attempt to reduce 
the numerical errors of the standard FDTD method [6-13]. 

The higher order (2, 4) FDTD scheme (H(2, 4) scheme) 
is one of the low dispersion FDTD algorithms. Its weak-
ness is that it requires a small time increment to produce 
accurate results, and even when a small time increment is 
used, its accuracy is lower than that of other low dis-
persion FDTD algorithms that use larger time increments 
at the operating frequency [11, 12]. We previously pre-
sented an optimization method for the conventional H(2, 
4) scheme [14]. We obtained a high level of accuracy by 
using the complementary dispersion properties of Yee and 
the H(2, 4) scheme with propagation angles, which re-
solved the small time increment problem of the H(2, 4) 
scheme. This paper expands that solution to a homoge-
neous, isotropic, and lossy material that has a constant 

conductivity for frequencies. 
As in our previous study [14], this study uses a weight-

ing factor for isotropic dispersion and two scaling factors 
in order to achieve an extremely small number of numeri-
cal errors. However, unlike the case in the previous study 
[14], we use a closed-form solution in the present study 
to find the weighting factor. This study found a weighting 
factor and two scaling factors under a square grid. Fig. 1 

Fig. 1. Flow chart for the proposed scheme. CPW=cells per 
wavelength, S=Courant number.
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shows the procedure of the proposed scheme. Section Ⅱ
presents the formulation of the numerical dispersion rela-
tions and the calculation of a new weighting factor by a 
closed-form solution. The scaling factors are calculated 
and the scheme’s performance is analyzed in Section Ⅲ. 
The numerical results of the proposed scheme and the 
H(2, 4) scheme are compared in Section Ⅳ.

Ⅱ. Formulation

In this section, nearly isotropic numerical phase con-
stants for the propagation angles were obtained using a 
weighting factor. We assumed a square grid and found the 
weighting factor by using update equations and a nume- 
rical dispersion relation. The Maxwell equations used in 
the FDTD method are as follows:  
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where E  is the electric field intensity and H  is the mag-
netic field intensity. In addition, e , m , and s  are re-
spectively the permittivity, permeability, and conductivity 
of a material. The following equations show the update 
equations of the proposed scheme at TMz-mode. A square 
grid ( x yD = D = D ) is assumed.
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where 
2,4i

xd =
is the difference operator defined as:

 

( ) ( ) ( )2 , 1 / 2, 1 / 2,xd f i j f i j f i j= + - - , (6)
  

( ) ( ) ( )4 , 3 / 2, 3 / 2,xd f i j f i j f i j= + - - . (7)
 

wF  is the weighting factor. E and H are the electric in-
tensity and magnetic field intensity, respectively. Their 

subscripts indicate the field component direction. xD  and 
yD  denote the unit cell length of the x-direction and y-di-

rection, respectively. tD is a time increment. The update 
equations are composed of the weighting sum of the up-
date equations of the Yee and H(2, 4) schemes. The ratio 
of the Yee and H(2, 4) schemes is determined by the 
weighting factor. If the weighting factor is one, the pro-
posed scheme becomes the H(2, 4) scheme, and if the 
weighting factor is zero, the proposed scheme becomes 
the Yee scheme.

Eq. (8) is the numerical dispersion relation of the pro-
posed scheme. 
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where cosxk k f=% %  and sin .yk k f=% % f is the propagation 
angle and c is the velocity of light. As shown in Fig. 2, 
the numerical phase constants of the H(2, 4) scheme and 
the proposed scheme have similar patterns in the propa- 
gation angles. They were obtained by Newton’s method 
[15]. The H(2, 4) and Yee schemes have a maximum nu-
merical phase constant on the main axes and a minimum 
value on the diagonal axes. However, the phase constants 
of the Yee scheme are larger than the analytic phase con-
stant, while those of the H(2, 4) scheme are smaller than 
the analytic value. This property makes the two schemes 
complementary. If the proposed scheme is used, better 
isotropic dispersion properties will be obtained than those 
of the H(2, 4) scheme.
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Fig. 2. Numerical phase constants of Yee [5], the H(2, 4) 
scheme and analytic phase constants. Cells per wa-
velength are 8 at 10 GHz and the Courant num-
ber is 0.6. The relative permittivity and permeabi-
lity are 4 and 1, respectively. The conductivity is 
0.05 S/m.
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Fig. 3. Weighting factor versus cells per wavelength (CPW) 
at different Courant numbers (S). The relative per-
mittivity is 4 and the conductivity is 0.05 S/m.

  

    

  We determined the weighting factor ( ) using the fol-
lowing equation:

 

( )1w H w YF Fb b×D = - - ×D , (9)
  

( ) ( ){ } ( ){ }CPW max , CPW min , CPWb b f b fD = - . (10)
 
bD is defined by Eq. (10) and the subscript indicates 

the numerical scheme (H: H(2, 4) and Y: Yee). Eq. (9) 
flattens the numerical wavenumbers of the proposed sche-
me for the propagation angles at the operating frequency.

Fig. 3 shows the weighting factor versus cells per wa-
velength (CPW). As shown in Fig. 3, the Courant number 
(S) has little effect on the weighting factor. As the CPW 
become larger,  the  weighting factor approaches a val-
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Fig. 4. (a) flatness of relative permittivity (εr=4) and (b) flatness of conductivity (σ=0.05 S/m) versus cells per wavelength 
(CPW). The Courant number is 0.6. 

ue of one. Fig. 4 shows the flatness of the relative permi-
ttivity and conductivity, defined as follows:

 

( ) ( ){ } ( ){ }CPW max , CPW min , CPWr r re e f e fD = - (11)
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where max(X) and min(X) stand for the maximum and 
minimum value of X, respectively. As shown in Fig. 4, 
the proposed scheme clearly has the best performance 
among the three schemes. Its flatness is sufficiently small 
to consider a constant relative permittivity and conducti-
vity for propagation angles.

Ⅲ. Numerical Error Reduction

In this section, the numerical errors are removed at a 
single frequency. This is followed by analysis of the wide 
band properties. Fig. 5 shows the relative permittivity and 
conductivity for the propagation angles. The estimated 
material constants of the proposed scheme (uncorrected) 
are much flatter than those of the H(2, 4) scheme. How-
ever, the difference is greater between the analytic solu-
tion and these constants than between those of the H(2, 
4) scheme. These numerical errors were reduced by multi-
plying two scaling factors, m1 and m2, by the relative per-
mittivity and conductivity, respectively. These create a 
new relative permittivity and conductivity, defined as

 

, 1r new rme e= ´ , (13)
  

2new ms s= ´ . (14)
 
These new material constants change the numerical dis-
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Fig. 5. (a) Relative permittivity and (b) conductivity com-
parison between the H(2, 4) scheme, proposed 
scheme, and analytic values. Simulation sett-
ings are 10 cells per wavelength and 0.6 S at 10 
GHz. S=Courant number.

  

  

persion relation. Eq. (15) represents the new numerical dis-
persion relation. 
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The numerical wavenumber ( k% ) of Eq. (15) is changed 
into the exact wavenumber ( k ), thereby allowing ana-
lytical calculation of the scaling factors. The solution of 
Eq. (15) is derived as follows:
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  Re[X] and Im[X] represent the real and imaginary part 
of X. The corrected case in Fig. 5 then represents the fi-
nal performance of the proposed scheme at the operating 
frequency. The estimated material constants (relative per-
mittivity and conductivity) are almost the same as the ana-
lytic values. 

The wideband properties of the proposed scheme are 
analyzed by defining ( )CPW, See and ( )CPW, Ses  as fol-
lows:
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where re%  and s%  are the estimated relative permittivity 
and conductivity, respectively. Fig. 6 the proposed scheme 
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Fig. 6. Error comparison between the proposed and H (2, 
4) schemes: (a) ee  and (b) es . The relative permi-
ttivity is 4 and the conductivity is 0.05 S/m. S 
=Courant number.
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has a much better performance than the H(2, 4) scheme 
for the wide CPW region. As expected, the proposed sche-
me has an extremely small error in the selected CPW. In 
addition, the proposed scheme has similar accuracy for the 
different Courant numbers in the selected CPW. 

Ⅳ. Numerical Results

The validity of the proposed scheme for lossy material 
was verified by calculating a scattering problem of the 
lossy circular dielectric. The radius of the dielectric is 15 
λ0 at 10 GHz. The dielectric is 4re =4 and 0.05 S/m.s =  A 
single tone plane wave is used as a source. Fig. 7 shows 
the simulation structure and conditions. The simulation 
settings are 20 CPW and 0.6 S at 10 GHz. The weighting 
factor and scaling factors are calculated by Eqs. (9), (16), 
and (17). The exact solutions were found in [8] and are 
compared with the calculated results. Fig. 8 shows that 
the results of the proposed scheme are in better agreement 
with the analytic solutions than are the results of the H(2, 
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Fig. 8. Comparison of the total E-field of the proposed scheme, the H(2, 4) scheme, and the analytic solution: (a) real 
parts and (b) imaginary part.

  

4) and Yee schemes.

Ⅴ. Conclusion

In this study, we expanded the optimized H(2, 4) sche-
me to a lossy material and assumed a square grid. A wei-
ghting factor calculated by a closed-form solution was 
used to obtain isotropic dispersion in the proposed sche-
me. Two scaling factors were applied to the relative per-
mittivity and conductivity and removed the numerical er-
rors in the optimized CPW. The proposed scheme has bet-
ter performance than the H(2, 4) scheme with the opti-
mized CPW. The proposed scheme can be used effec-
tively in electrically large problems, and can easily be ex-
panded to 3D.

This work has been supported by the Low Ob-
servable Technology Research Center Program of De-
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