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NUMERICAL METHOD FOR A SYSTEM OF SINGULARLY

PERTURBED CONVECTION DIFFUSION EQUATIONS WITH

INTEGRAL BOUNDARY CONDITIONS

Velusamy Raja and Ayyadurai Tamilselvan

Abstract. A class of systems of singularly perturbed convection diffu-
sion type equations with integral boundary conditions is considered. A

numerical method based on a finite difference scheme on a Shishkin mesh

is presented. The suggested method is of almost first order convergence.
An error estimate is derived in the discrete maximum norm. Numerical

examples are presented to validate the theoretical estimates.

1. Introduction

Boundary value problems with integral boundary conditions are an impor-
tant class of problems which arise in the fields of electro chemistry [10], thermo
elasticity [11], heat conduction [7] etc. For a discussion of existence and unique-
ness results for applications of second order differential equations with integral
boundary conditions see [1,3,4,8,14]. In [16] the existence of positive solutions
of boundary value problems for systems of second order differential equations
with integral boundary condition on the half-line was analyzed. In [17], Zhilin
Yang considered the existence of positive solutions to a system of second order
nonlocal boundary value problems by using fixed point index theory in a cone.
Lazhar Bougoffa [5], using the Riesz representation theorem, proved the ex-
istence and uniqueness of generalized solutions. The above mentioned papers
are mainly concerned with the regular case (without boundary layers). Moti-
vated by above mentioned works, in this paper we consider a class of systems
of singularly perturbed convection diffusion equations with integral boundary
conditions.

Differential equation with a small parameter ε multiplying the leading de-
rivative is called Singularly Perturbed Problem (SPP). Most of the traditional
numerical methods are not suitable for SPP because the presence of the pa-
rameter ε makes the solutions of such equations to have rapid changes in small
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regions (boundary layers) of the domain. Hence it is necessary to develop ap-
propriate numerical methods which converge ε-uniformly [2, 9, 12, 15]. In [13]
and [6] uniform convergence of the approximate solution on a uniform mesh
is proved for second order differential equations with integral boundary con-
dition. In the present paper, a fitted finite difference method is suggested to
solve a class of systems of singularly perturbed convection diffusion equations
with integral boundary conditions.

This paper is arranged in the following manner. In Section 2 the continuous
problem is derived. In Section 3 bounds on the derivatives of the continuous
problems are discussed. The numerical method is described in Section 4. In
Section 5 the error estimate for approximate solution is presented. Numerical
results are given in Section 6. The conclusion is presented in Section 7.

2. Statement of the problem

Motivated by the works of [5, 6, 16, 17], we consider the following system of
singularly perturbed problem with integral boundary conditions:

(2.1)

{
L1ū(x)=−εu′′1(x) + a1(x)u′1(x)+b11(x)u1(x)+b12(x)u2(x)=f1(x),

L2ū(x)=−εu′′2(x)+a2(x)u′2(x)+b21(x)u1(x)+b22(x)u2(x)=f2(x),

where ū(x) = (u1(x), u2(x)), x ∈ Ω = (0, 1), with the boundary conditions

(2.2)


u1(0) = A1, B1u1(1) = u1(1)− ε

∫ 1

0

g1(x)u1(x)dx = l1,

u2(0) = A2, B2u2(1) = u2(1)− ε
∫ 1

0

g2(x)u2(x)dx = l2,

where 0 < ε << 1 is a small positive parameter, the functions a1(x), a2(x),
b11(x), b12(x), b21(x), b22(x), f1(x), f2(x) are sufficiently smooth on Ω̄ = [0, 1]
and satisfy the following assumptions:

ai(x) ≥ αi > 0, i = 1, 2, x ∈ Ω̄,

b12(x) ≤ 0, b21(x) ≤ 0, b11(x) + b12(x) ≥ 0, b21(x) + b22(x) ≥ 0, x ∈ Ω̄,

gi is nonnegative and 1−
∫ 1

0

gi(x)dx > 0, i = 1, 2 and α = min{α1, α2}.

Throughout the paper, we assume that ε ≤ CN−1, C denotes a positive
constant. We are using the supremum norm, ‖u‖D = sup

x∈D
|u(x)|, to establish

the convergence of the numerical solution to the exact solution.

3. The continuous problem

Theorem 3.1 (Maximum Principle). Let ū(x) ∈ C2(Ω̄) be any function sat-
isfying u1(0) ≥ 0, u2(0) ≥ 0, B1u1(1) ≥ 0, B2u2(1) ≥ 0, L1ū(x) ≥ 0 and
L2ū(x) ≥ 0, x ∈ Ω. Then ū(x) ≥ 0, x ∈ Ω̄.
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Proof. Define s̄(x) = (s1(x), s2(x)) as s1(x) = s2(x) = 1 + x. Note that
s̄(x) > 0, x ∈ Ω̄, L1s̄(x) > 0, L2s̄(x) > 0, x ∈ Ω, s1(0) > 0, s2(0) > 0,
B1s1(1) > 0 and B2s2(1) > 0. Further we define

γ = max

{
max
x∈Ω̄

(
−u1(x)

s1(x)

)
,max
x∈Ω̄

(
−u2(x)

s2(x)

)}
.

Then there exists at least one x0 ∈ Ω such that
(
−u1(x0)
s1(x0)

)
= γ or

(
−u2(x0)
s2(x0)

)
= γ

or both. Also (ū + γs̄)(x) ≥ 0, x ∈ Ω̄. Without loss of generality we assume

that
(
−u1(x0)
s1(x0)

)
= γ. Therefore the function (u1 + γs1) attains its minimum at

x = x0. It is easy to observe that for each x ∈ Ω̄, ū(x) ≥ 0 if γ ≤ 0. Now we
will show that indeed γ ≤ 0. Suppose γ > 0.

Case (i): Assume that (u1 + γs1)(x0) = 0 for x0 = 0. Then

0 = (u1 + γs1)(0) = u1(0) + γs1(0) > 0.

Case (ii): Assume that (u1 + γs1)(x0) = 0 for x0 ∈ Ω. Then

0 < L1(ū+ γs̄)(x0) = − ε(u1 + γs1)′′(x0) + a1(x0)(u1 + γs1)′(x0)

+ b11(x0)(u1 + γs1)(x0) + b12(x0)(u2 + γs2)(x0) ≤ 0.

Case (iii): Assume that (u1 + γs1)(x0) = 0 for x0 = 1. Then

0 < B1(u1 + γs1)(1) = (u1 + γs1)(1)− ε
∫ 1

0

g1(x)(u1 + γs1)(x)dx ≤ 0.

Observe that in all the three cases we arrived a contradiction. Therefore γ > 0 is
not possible. This shows that u1(x) ≥ 0. Similarly we can show that u2(x) ≥ 0.
Hence ū(x) ≥ 0, x ∈ Ω̄. �

Note. Since the operators Lj , j = 1, 2 satisfy the above maximum principle,
the solution ū(x) of (2.1)-(2.2) is unique, if it exists.

Corollary 3.2 (Stability Result). The solution ū(x) of problem (2.1)-(2.2)
satisfies the bound

|ui(x)| ≤ C max{|u1(0)|, |u2(0)|, |B1u1(1)|, |B2u2(1)|,
||L1ū||Ω, ||L2ū||Ω}, x ∈ Ω̄, i = 1, 2.

Proof. Let C > 0 be a constant. Define ψ±i (x) = CMsi(x)± ui(x), x ∈ Ω̄, i =
1, 2, where M = max{|u1(0)|, |u2(0)|, |B1u1(1)|, |B2u2(1)|, ||L1ū||Ω, ||L2ū||Ω}.

Note that ψ±1 (0) ≥ 0, B1ψ
±
1 (1) ≥ 0, ψ±2 (0) ≥ 0, B2ψ

±
2 (1) ≥ 0 by proper

choice of C > 0. It is easy to see that L1ψ̄
±(x) ≥ 0, L2ψ̄

±(x) ≥ 0. Then by
maximum principle, we get the required result. �

Lemma 3.3. Let ū(x) be the solution of (2.1)-(2.2). Then, for 1 ≤ k ≤ 3,

|u(k)
j (x)| ≤ Cε−k, x ∈ Ω̄, j = 1, 2.
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Proof. Using Corollary 3.2 and applying the arguments as given in [12] this
lemma can be proved. �

The uniform error estimates can be derived using the sharper bounds on
the derivatives of the solution ū(x). To get sharper bounds we write the an-
alytical solution in the form ū(x) = v̄(x) + w̄(x), where v̄(x) = (v1(x), v2(x))
and w̄(x) = (w1(x), w2(x)). The regular component v̄(x) can be written as
v̄(x) = v̄0(x) + εv̄1(x) + ε2v̄2(x), where v̄0(x) = (v01(x), v02(x)), v̄1(x) =
(v11(x), v12(x)), v̄2(x) = (v21(x), v22(x)) satisfy the following equations respec-
tively: 

a1(x)v01(x) + b11(x)v01(x) + b12(x)v02(x) = f1(x),

a2(x)v02(x) + b21(x)v01(x) + b22(x)v02(x) = f2(x),

v01(0) = u1(0), v02(0) = u2(0),

(3.1)


a1(x)v′11(x) + b11(x)v11(x) + b12(x)v12(x) = v′′01(x),

a2(x)v′12(x) + b21(x)v11(x) + b22(x)v12(x) = v′′02(x),

v11(0) = 0, v12(0) = 0,

(3.2)

{
L1v̄2(x) = v′′11(x), v21(0) = 0, B1v21(1) = 0,

L2v̄2(x) = v′′12(x), v22(0) = 0, B2v22(1) = 0.
(3.3)

Thus the regular component v̄(x) is the solution of

{
L1v̄(x)=f1(x), v1(0)=u1(0), B1v1(1)=B1v01(1)+εB1v11(1)+ε2B1v21(1),

L2v̄(x)=f2(x), v2(0)=u2(0), B2v2(1)=B2v02(1)+εB2v12(1)+ε2B2v22(1),

(3.4)

and layer component w̄(x) is the solution of{
L1w̄(x) = 0, w1(0) = 0, B1w1(1) = B1u1(1)−B1v1(1),

L2w̄(x) = 0, w2(0) = 0, B2w2(1) = B2u2(1)−B2v2(1).
(3.5)

Theorem 3.4. Let ū(x) be the solution of the problem (2.1)-(2.2) and v̄0(x)
be its reduced problem solution defined in (3.1). Then

|uj(x)− v0j(x)| ≤ C(ε+ e−α(1−x)/ε), x ∈ Ω̄, j = 1, 2.

Proof. Consider the barrier functions ψ̄±(x) = (ψ±1 (x), ψ±2 (x)), where

ψ±j (x) = C(εsj(x) + e−α(1−x)/ε)± (uj(x)− v0j(x)), x ∈ Ω̄, j = 1, 2.

Note that ψ±j (x) ∈ C0(Ω̄) ∩ C2(Ω). It is easy to see that, ψ±1 (0) ≥ 0 for a
suitable choice of C > 0. Further

B1ψ
±
1 (1) = ψ±1 (1)− ε

∫ 1

0

g1(x)ψ±1 (x)dx

≥ C(2ε+ 1)− 2Cε

∫ 1

0

g1(x)dx− Cε
∫ 1

0

g1(x)dx±B1(u1 − v01)(1)
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≥ 0

for a suitable choice of C > 0.
Let x ∈ Ω. Then

L1ψ̄
±(x) = Cε[a1(x)s′1(x) + b11(x)s1(x) + b12(x)s2(x)]

+ C[
α

ε
(a1(x)− α) + b11(x) + b12(x)]e−α(1−x)/ε

± L1(ū− v̄01)(x)

≥ 0,

by a proper choice of C > 0. Similarly one can prove that B2ψ
±
2 (1) ≥ 0 and

L2ψ̄
±
2 (x) ≥ 0. Then by maximum principle we have ψ̄±(x) ≥ 0, x ∈ Ω̄. �

Lemma 3.5. The regular component v̄(x) and the layer component w̄(x) of
the solution ū(x) of the problem (2.1)-(2.2) satisfy the following bounds:

||v(k)
j ||Ω̄ ≤ C(1 + ε2−k),(3.6)

|w(k)
j (x)| ≤ Cε−ke−α(1−x)/ε, 0 ≤ k ≤ 3, x ∈ Ω̄, j = 1, 2.(3.7)

Proof. Integrating (3.4) and using the stability result one can prove the in-
equalities (3.6). To prove the inequalities (3.7), consider the functions ψ̄±(x) =
(ψ±1 (x), ψ±2 (x)), where ψ±j (x) = Ce−α(1−x)/ε±wj(x), j = 1, 2. It is easy to see

that ψ±1 (0) ≥ 0 and ψ±2 (0) ≥ 0 for a suitable choice of C > 0. Further

B1ψ
±
1 (1)=ψ±1 (1)−ε

∫ 1

0

g1(x)ψ±1 (x)dx ≥ C(1− ε
∫ 1

0

g1(x)dx)±B1w1(1) ≥ 0

for a suitable choice of C > 0. Let x ∈ Ω.

L1ψ̄
±(x) = C

[α
ε

(a1(x)− α) + b11(x) + b12(x)
]
e

−α(1−x)
ε ± L1w̄ ≥ 0.

Similarly we can prove B2ψ
±
2 (1) ≥ 0 and L2ψ̄

± ≥ 0. Hence the maximum

principle gives ψ±j (x) ≥ 0 and so |wj(x)| ≤ Ce−α(1−x)/ε for all x ∈ Ω̄, j = 1, 2.

Integration of (3.5) yields the estimate of |w′(x)|. From (3.5), one can derive
the rest of derivative estimates (3.7). �

Note. From the above theorem, it is easy to see that,

(3.8) |uj(x)− vj(x)| ≤ Ce−α(1−x)/ε, x ∈ Ω̄, j = 1, 2.

4. The discrete problem

On Ω̄ a piecewise uniform Shishkin mesh of N (≥ 4) mesh intervals is con-
structed. The domain Ω̄ is partitioned into two subintervals [0, 1 − σ], and
[1 − σ, 1] where σ is the transition parameter defined by σ = min{ 1

2 ,
2ε lnN
α }.

On [0, 1 − σ] and [1 − σ, 1] a uniform mesh with N
2 mesh intervals are placed.

The interior mesh points are denoted by ΩN . Let hi = xi − xi−1 be the mesh

step and ~i = hi+1+hi
2 .
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The discrete problem corresponding to (2.1)-(2.2) is:
Find Ū(xi) = (U1(xi), U2(xi)) for i = 0, 1, 2 . . . , N such that

(4.1)


LN1 Ū(xi) = −εδ2U1(xi) + a1(xi)D

−U1(xi) + b11(xi)U1(xi)

+b12(xi)U2(xi) = f1(xi), ∀xi ∈ ΩN ,

LN2 Ū(xi) = −εδ2U2(xi) + a2(xi)D
−U2(xi) + b21(xi)U1(xi)

+b22(xi)U2(xi) = f2(xi), ∀xi ∈ ΩN .

(4.2)

U1(x0) = A1,

BN1 U1(xN ) = U1(xN )− ε
N∑
i=1

g1(xi−1)U1(xi−1)+g1(xi)U1(xi)
2 hi = l1,∀xi ∈ Ω̄N ,

U2(x0) = A2,

BN2 U2(xN ) = U2(xN )− ε
N∑
i=1

g2(xi−1)U2(xi−1)+g2(xi)U2(xi)
2 hi = l2,∀xi ∈ Ω̄N ,

where

δ2Uj(xi) =
1

~i

(
Uj(xi+1) − Uj(xi)

hi+1
−
Uj(xi)− Uj(xi−1)

hi

)
,

D−Uj(xi) =
Uj(xi)− Uj(xi−1)

hi
, j = 1, 2.

Theorem 4.1 (Discrete Maximum Principle). Let Ψ̄(xi) = (Ψ1(xi),Ψ2(xi))
be the mesh function satisfying Ψ1(x0) ≥ 0, Ψ2(x0) ≥ 0, BN1 Ψ1(xN ) ≥ 0,
BN2 Ψ1(xN ) ≥ 0, LN1 Ψ̄(xi) ≥ 0, and LN2 Ψ̄(xi) ≥ 0. Then Ψ̄(xi) ≥ 0, xi ∈ Ω̄N .

Proof. Define S̄(xi) = (S1(xi), S2(xi)), where S1(xi) = S2(xi) = 1 + xi. Note
that S̄(xi) > 0,∀xi ∈ Ω̄N , BN1 S1(xN ) > 0, BN2 S2(xN ) > 0, LN1 S̄1(xi) > 0 and
LN1 S̄1(xi) > 0, ∀xi ∈ ΩN . Let

µ = max

{
max
xi∈Ω̄N

(
−Ψ1(xi)

S1(xi)

)
, max
xi∈Ω̄N

(
−Ψ2(xi)

S2(xi)

)}
.

Then there exists one xk ∈ Ω̄N such that Ψ1(xk) + µS1(xk) = 0 or Ψ2(xk) +
µS2(xk) = 0 or both. Also Ψj(xi) + µSj(xi) ≥ 0, xi ∈ Ω̄N , j = 1, 2. Without

loss of generality we assume that
(
−Ψ1(xi)
S1(xi)

)
= µ. Therefore the function (Ψ1 +

µS1) attains minimum at xi = xk. It is easy to observe that for each xi ∈ Ω̄N ,
Ψ̄(xi) ≥ 0 if µ ≤ 0. Now we will show that indeed µ ≤ 0. Suppose µ > 0.

Case (i): Assume that (Ψ1 + µS1)(xk) = 0 for xk = 0. Then

0 = (Ψ1 + µS1)(xk) = Ψ1(xk) + µS1(xk) > 0.

Case (ii): Assume that (Ψ1 + µS1)(xk) = 0 for xk ∈ ΩN . Then

0 < LN1 (Ψ̄ + µS̄)(xk)

= − εδ2(Ψ1 + µS1)(xk) + a1(xk)D−(Ψ1 + µS1)(xk)
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+ b11(xk)(Ψ1 + µS1)(xk) + b12(xk)(Ψ2 + µS2)(xk) ≤ 0.

Case (iii): Assume that (Ψ1 + µS1)(xk) = 1 for xk = 1. Then

0 < BN1 (Ψ1 + µS1)(xk)

= (Ψ1 + µS1)(xk)

− ε
N∑
i=1

g1(xi−1)(Ψ1 + µS1)(xi−1) + g1(xi)(Ψ1 + µS1)(xi)

2
hi ≤ 0.

Observe that in all the three cases we arrived a contradiction. Therefore µ > 0
is not possible. This shows that Ψ1(xi) ≥ 0. Similarly we can show that
Ψ2(xi) ≥ 0. Hence Ψ̄(xi) ≥ 0, xi ∈ Ω̄N . �

Lemma 4.2 (Discrete Stability Result). Let Ū(xi) = (U1(xi), U2(xi)) be any
mesh function. Then

|Uj(xi)| ≤ C max
{
|U1(x0)|, |U2(x0)|, |B1U1(xN )|, |B2U2(xN )|,

max
xi∈Ω̄N

|LN1 Ū(xi)| max
xi∈Ω̄N

|LN2 Ū(xi)|
}
, xi ∈ Ω̄N , j = 1, 2.

Proof. By choosing suitable barrier functions and using Theorem 4.1, one can
establish the above inequality. �

Analogous to the continuous case, the discrete solution Ū(xi) can be decom-
posed as

Ū(xi) = V̄ (xi) + W̄ (xi),

where V (xi) and W (xi) are respectively the solutions of the problems:

(4.3)

{
LN1 V̄ (xi)=f1(xi), xi ∈ ΩN , V1(x0)=v1(0), BN1 V1(xN )=B1v1(1),

LN2 V̄ (xi)=f2(xi), xi ∈ ΩN , V2(x0)=v2(0), BN2 V2(xN )=B2v2(1).

(4.4)

{
LN1 W̄ = 0, xi ∈ ΩN , W1(x0) = w1(0), BN1 W1(xN ) = B1w1(1),

LN2 W̄ = 0, xi ∈ ΩN , W2(x0) = w2(0), BN2 W2(xN ) = B1w1(1).

The following theorem gives an estimate for the difference of the solutions
of (4.1)-(4.2) and (4.3).

Theorem 4.3. Let Ū(xi) be a numerical solution of (2.1)-(2.2) defined by
(4.1)-(4.2) and V̄ (xi) be a numerical solution of (3.4) defined by (4.3). Then

|Uj(xi)− Vj(xi)| ≤ C

{
N−1, i = 0, 1, . . . , N2 ,

N−1 + |lj −BNj Vj(xN )| i = N
2 + 1, . . . , N,

j = 1, 2.

Proof. Consider mesh functions Ψ̄±(xi) = (Ψ±1 (xi),Ψ
±
2 (xi)), where

Ψ±j (xi) = CN−1Sj(xi) + Cxiϕ(xi)± (Uj(xi)− Vj(xi)), xi ∈ Ω̄N ,
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ϕ(xi) =

{
0, i = 0, 1, . . . , N2 ,

|lj −BNj Vj(xN )| i = N
2 + 1, . . . , N,

j = 1, 2.

Now

LN1 Ψ̄±(xi) = CN−1[a1(xi) + b11(xi)S1(xi) + b12(xi)s2(xi)]

+ CN−1ϕ(xi)[a1(xi) + xi(b11(xi) + b12(xi))] ≥ 0, xi ∈ ΩN .

Similarly one can prove that LN2 Ψ̄±(xi) ≥ 0, xi ∈ ΩN . Then by Theorem 4.1
we get the result. �

5. Error estimates for the solution

We obtain separate error estimates for each component of the numerical
solution.

Lemma 5.1. Let V̄ (xi) be a numerical solution of (3.4) defined by (4.3). Then

|(vj − Vj)(xi)| ≤ CN−1, xi ∈ Ω̄N , j = 1, 2.

Proof. By [15] we have

|LNj (v̄ − V̄ )(xi)| ≤ CN−1, j = 1, 2.

Further

BNj (vj − Vj)(xN ) = LN1 vj(xN )− LN1 Vj(xN )

= LN1 vj(xN )− lj ,
|BNj (vj − Vj)(xN )| ≤ Cε(h3

1v
′′(χ1) + · · ·+ h3

Nv
′′(χN ))

≤ CN−2,

where xi−1 ≤ χi ≤ xi, 1 ≤ i ≤ N , j = 1, 2. Then by discrete stability result,
we have |(vj − Vj)(xi)| ≤ CN−1, xi ∈ Ω̄N , j = 1, 2. �

Lemma 5.2. Let W̄ (xi) be a numerical solution of (3.5) defined in (4.4). Then

|(wj −Wj)(xi)| ≤ CN−1(lnN)2, xi ∈ Ω̄N , j = 1, 2.

Proof. Note that

|wj(xi)−Wj(xi)| ≤ |uj(xi)− Uj(xi)|+ |vj(xi)− Vj(xi)|, j = 1, 2.

Then by (3.8), Theorem 3.4 and Lemma 5.1, we have

|uj(xi)−Uj(xi)| ≤ |Uj(xi)−Vj(xi)|+|vj(xi)−Vj(xi)|+|uj(xi)−vj(xi)|, j = 1, 2.

Therefore

|wj(xi)−Wj(xi)| ≤ |uj(xi)− Uj(xi)|+ |vj(xi)− Vj(xi)|

≤ Ce−α(1−xi)/ε + CN−1

≤ Ce−ασ/ε + CN−1 ≤ CN−1, 0 ≤ i ≤ N

2
.
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Now consider mesh functions

ψ±j (xi) = CN−1Sj(xi) + CN−1 σ

ε2
(xi − (1− σ))± (wj −Wj)(xi),

xi ∈ [1− σ, 1], j = 1, 2.

It is easy to see that Ψ±j (xN/2) ≥ 0 and BjΨ
±(xN ) ≥ 0, j = 1, 2.

LN1 Ψ̄±(xi) = CN−1a1(xi)(1 +
σ

ε2
)± (LN1 − L1)w̄(xi)

≥ CN−1α(1 +
σ

ε2
)± CN−1ε−2 ≥ 0.

Similarly one can prove that L2Ψ̄±(xi) ≥ 0. Then by discrete maximum prin-
ciple, we have ψ±j (xi) ≥ 0, xi ∈ [1− σ, 1], j = 1, 2.

Therefore |wj(xi)−Wj(xi)| ≤ CN−1(lnN)2, xi ∈ [1− σ, 1], j = 1, 2. �

Theorem 5.3. Let Ū(xi) be the solution of (2.1)-(2.2) defined in (4.1)-(4.2).
Then

|uj(xi)− Uj(xi)| ≤ CN−1(lnN)2, xi ∈ Ω̄N , j = 1, 2.

Proof. Combining Lemma 5.1 and Lemma 5.2, the proof gets completed. �

6. Numerical results

Example 6.1.

−εu′′1(x) + (1 + x)u′(x) + 6u1(x)− 2u2(x) = 2, x ∈ Ω,

−εu′′1(x) + (1 + x)u′(x)− 2u1(x) + 5u2(x) = 3, x ∈ Ω,

with the boundary conditions

u1(0) = 0, u1(1)− ε
∫ 1

0

x

2
u1(x)dx = 0,

u2(0) = 0, u2(1)− ε
∫ 1

0

x

2
u2(x)dx = 0.

Example 6.2.

− εu′′1(x) + u′(x) + 6u1(x)− 2u2(x) = exp(x), x ∈ Ω,

− εu′′1(x) + u′(x)− 2u1(x) + 5u2(x) = cos(x), x ∈ Ω,

with the boundary conditions

u1(0) = 0, u1(1)− ε
∫ 1

0

x

2
u1(x)dx = 1,

u2(0) = 0, u2(1)− ε
∫ 1

0

x

2
u2(x)dx = 1.
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The analytical solution of the above examples are not available. Therefore,
we estimate the error by using double mesh principle which is defined as DN

ε =
max
xi∈Ω̄N

|UN (xi) − U2N (xi)| and DN = max
ε
DN
ε where UN (xi) and U2N (xi)

denote the numerical solution computed using N and 2N mesh points. From

these quantities the order of convergence is defined as PN = log2( D
N

D2N ). In

Tables 1 and 2, DN
1 and DN

2 denote the maximum pointwise errors of U1 and
U2 respectively, PN1 and PN2 denote the order of convergence with respect to
U1 and U2 respectively. The assumption ε ≤ CN−1 is made for only theoretical
purpose. The numerical method works for all ε for our examples.

The numerical solutions are plotted in Figure 1 and Figure 3. Loglog plot
of the maximum pointwise errors of Example 6.1 is given in Figure 2. The
maximum pointwise errors for Example 6.2 through loglog plot is presented in
Figure 4.
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Figure 1. Numerical solution graph of the Example 6.1 for
ε = 2−7 and N = 64

Table 1. Maximum pointwise errors and order of convergence
for Example 6.1

Number of mesh points N
16 32 64 128 256 512 1024

DN
1 5.075e-02 3.286e-02 2.128e-02 1.280e-02 7.167e-03 3.993e-03 2.134e-03

PN1 0.6268 0.6267 0.7329 0.8374 0.8437 0.9035 -
DN

2 3.788e-02 2.574e-02 1.563e-02 9.878e-03 5.850e-03 3.378e-03 1.911e-03
PN2 0.5573 0.7194 0.6624 0.7558 0.7921 0.8219 -
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Figure 2. Maximum pointwise errors as a function of N and
ε for the solution U1 and U2 for Example 6.1
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Figure 3. Numerical solution graph of the Example 6.2 for
ε = 2−7 and N = 64

Table 2. Maximum pointwise errors and order of convergence
for Example 6.2

Number of mesh points N
16 32 64 128 256 512 1024

DN
1 3.253e-02 1.924e-02 1.170e-02 6.769e-03 3.693e-03 2.040e-03 1.079e-03

PN1 0.7576 0.7165 0.7904 0.8741 0.8557 0.9186 -
DN

2 1.425e-02 1.380e-02 9.353e-03 5.653e-03 3.220e-03 1.790e-03 9.819e-04
PN2 0.4595 0.5620 0.7264 0.8120 0.8470 0.8662 -
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Figure 4. Maximum pointwise errors as a function of N and
ε for the solution U1 and U2 for Example 6.2

7. Conclusion

We have solved a class of system of singularly perturbed boundary value
problem (2.1)-(2.2) with integral boundary conditions, using a finite difference
method on a Shishkin mesh. The method is shown to be of order O(N−1 ln2N)
(See Tables 1 and 2). Two examples are given to illustrate the numerical
method. Our numerical results reflect the theoretical estimates. We are de-
veloping a numerical method for the class of systems of singularly perturbed
differential equations with integral boundary conditions for two different pa-
rameters.
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