• Title/Summary/Keyword: FinFET

Search Result 96, Processing Time 0.029 seconds

채널의 도핑 농도 변화에 따른 20 nm 이하의 FinFET 플래시 메모리에서의 프로그램 특성

  • Gwon, Jeong-Im;Kim, Tae-Hwan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.348-348
    • /
    • 2012
  • 휴대용 저장매체에서부터 solid state disk와 같은 고속 시스템 저장 매체 까지 플래시 메모리의 활용도가 급속도로 커지고 있다. 이에 플래시 메모리에 대한 연구 또한 활발히 진행 되고 있다. 현재 다결정 실리콘을 전하 주입 층으로 사용하는 기존의 플래시 메모리는 20 nm 급 까지 비례 축소되어 활용되고 있다. 하지만 20 nm 이하 크기의 소자에서는 과도한 누설전류와 구동전압의 불안정, 큰 간섭현상으로 인한 성능저하와 같은 많은 문제점에 봉착해 있다. 이를 해결하기 위해 FinFET, Vertical 3-dimensional memory, MRAM (Magnetoresistive Random Access Memory), PRAM(Phase-change Memory)과 같은 차세대 메모리 소자에 대한 연구가 활발히 진행되고 있다. 본 연구에서는 차세대 메모리 구조로 주목 받고 있는 FinFET 구조를 가진 플래시 메모리에서 fin 의 채널영역의 도핑 농도 변화에 의한 20 nm 이하의 게이트 크기를 가지는 소자의 전기적 특성과 프로그램 특성을 3차원 시뮬레이션을 통해 계산하였다. 본 연구에서는 FinFET 구조를 가진 플래시 메모리의 채널이 형성되는 fin의 윗부분도핑농도의 변화에 의한 전기적 특성과 프로그램 특성을 계산하였다. 본 계산에 사용된 구조는 게이트의 크기, 핀의 두께와 높이는 18, 15 그리고 28 nm이다. 기판은 Boron으로 $1{\times}10^{18}cm^{-3}$ 농도로 도핑 하였으며, 소스와 드레인, 다결정 실리콘 게이트는 $1{\times}10^{20}cm^{-3}$ 농도로 Phosphorus로 도핑 하였다. 채널이 형성되는 fin의 윗부분의 도핑농도를 $1{\times}10^{18}cm^{-3}$ 에서 $1{\times}5^{19}cm^{-3}$ 까지 변화 시키면서 각 농도에 대한 프로그램 특성과 전기적 특성을 계산하였다. 전류-전압 곡선과 전자주입 층에 주입되는 전하의 양을 통해 특성을 확인하였고 각 구조에서의 채널과 전자 주입 층의 전자의 농도, 전기장, 전기적 위치 에너지와 공핍 영역의 분포를 통해 분석하였다. 채널의 도핑농도 변화로 인한 fin 영역의 공핍 영역의 분포 변화로 인해 전기적 특성과 프로그램 특성이 변화함을 확인하였다.

  • PDF

Analysis of Tunneling Transition by Characteristics of Gate Oxide for Nano Structure FinFET (나노구조 FinFET에서 게이트산화막의 특성에 따른 터널링의 변화 분석)

  • Han, Ji-Hyung;Jung, Hak-Kee;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.751-754
    • /
    • 2008
  • 본 연구에서는 나노구조 FinFET 제작시 게이트산화막 특성이 서브문턱영역에서 전송특성에 미치는 영향을 분석하고자 한다. 이를 위하여 분석학적 전송모델을 사용하였으며 분석학적 모델을 유도하기 위하여 포아슨방정식을 이용하였다. 나노구조 FinFET에서 문턱전압이하의 전류전도에 영향을 미치는 열방사전류와 터널링전류에 대하여 분석하였으며 본 연구의 모델이 타당하다는 것을 입증하기 위하여 서브문턱스윙값을 이차원 시뮬레이션값과 비교하였다. 결과적으로 본 연구에서 제시한 전송특성모델이 이차원 시뮬레이션모델과 매우 잘 일치하였으며 FinFET의 전송특성이 게이트산화막의 특성에 따라 매우 큰 변화를 보이는 것을 알 수 있었다. 특히 게이트길이가 작아지면서 전송특성에 커다란 영향을 미치는 터널링특성에 대하여 집중적으로 분석하였다.

  • PDF

Feasibility Study of Non-volatile Memory Device Structure for Nanometer MOSFET (나노미터 MOSFET비휘발성 메모리 소자 구조의 탐색)

  • Jeong, Ju Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.14 no.2
    • /
    • pp.41-45
    • /
    • 2015
  • From 20nm technology node, the finFET has become standard device for ULSI's. However, the finFET process made stacking gate non-volatile memory obsolete. Some reported capacitor-less DRAM structure by utilizing the FBE. We present possible non-volatile memory device structure similar to the dual gate MOSFET. One of the gates is left floating. Since body of the finFET is only 40nm thick, control gate bias can make electron tunneling through the floating gate oxide which sits across the body. For programming, gate is biased to accumulation mode with few volts. Simulation results show that the programming electron current flows at the interface between floating gate oxide and the body. It also shows that the magnitude of the programming current can be easily controlled by the drain voltage. Injected electrons at the floating gate act similar to the body bias which changes the threshold voltage of the device.

Dielectric Layer Planarization Process for Silicon Trench Structure (실리콘 트랜치 구조 형성용 유전체 평탄화 공정)

  • Cho, Il Hwan;Seo, Dongsun
    • Journal of IKEEE
    • /
    • v.19 no.1
    • /
    • pp.41-44
    • /
    • 2015
  • Silicon trench process for bulk fin field effect transistor (finFET) is suggested without using chemical mechanical polishing (CMP) that cause contamination problems with chemical stuff. This process uses thickness difference of photo resistor spin coating and silicon nitride sacrificial layer. Planarization of silicon oxide and silicon trench formation can be performed with etching processes. In this work 50 nm silicon trench is fabricated with AZ 1512 photo resistor and process results are introduced.

Low Voltage Program/Erase Characteristics of Si Nanocrystal Memory with Damascene Gate FinFET on Bulk Si Wafer

  • Choe, Jeong-Dong;Yeo, Kyoung-Hwan;Ahn, Young-Joon;Lee, Jong-Jin;Lee, Se-Hoon;Choi, Byung-Yong;Sung, Suk-Kang;Cho, Eun-Suk;Lee, Choong-Ho;Kim, Dong-Won;Chung, Il-Sub;Park, Dong-Gun;Ryu, Byung-Il
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.6 no.2
    • /
    • pp.68-73
    • /
    • 2006
  • We propose a damascene gate FinFET with Si nanocrystals implemented on bulk silicon wafer for low voltage flash memory device. The use of optimized SRON (Silicon-Rich Oxynitride) process allows a high degree of control of the Si excess in the oxide. The FinFET with Si nanocrystals shows high program/erase (P/E) speed, large $V_{TH}$ shifts over 2.5V at 12V/$10{\mu}s$ for program and -12V/1ms for erase, good retention time, and acceptable endurance characteristics. Si nanocrystal memory with damascene gate FinFET is a solution of gate stack and voltage scaling for future generations of flash memory device. Index Terms-FinFET, Si-nanocrystal, SRON(Si-Rich Oxynitride), flash memory device.

Performance Optimization Study of FinFETs Considering Parasitic Capacitance and Resistance

  • An, TaeYoon;Choe, KyeongKeun;Kwon, Kee-Won;Kim, SoYoung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.5
    • /
    • pp.525-536
    • /
    • 2014
  • Recently, the first generation of mass production of FinFET-based microprocessors has begun, and scaling of FinFET transistors is ongoing. Traditional capacitance and resistance models cannot be applied to nonplanar-gate transistors like FinFETs. Although scaling of nanoscale FinFETs may alleviate electrostatic limitations, parasitic capacitances and resistances increase owing to the increasing proximity of the source/drain (S/D) region and metal contact. In this paper, we develop analytical models of parasitic components of FinFETs that employ the raised source/drain structure and metal contact. The accuracy of the proposed model is verified with the results of a 3-D field solver, Raphael. We also investigate the effects of layout changes on the parasitic components and the current-gain cutoff frequency ($f_T$). The optimal FinFET layout design for RF performance is predicted using the proposed analytical models. The proposed analytical model can be implemented as a compact model for accurate circuit simulations.

Design and Analysis of Gate-recessed AlGaN/GaN Fin-type Field-Effect Transistor

  • Jang, Young In;Seo, Jae Hwa;Yoon, Young Jun;Eun, Hye Rim;Kwon, Ra Hee;Lee, Jung-Hee;Kwon, Hyuck-In;Kang, In Man
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.5
    • /
    • pp.554-562
    • /
    • 2015
  • This paper presents the design and analysis of gate-recessed AlGaN/GaN Fin-type Field-Effect Transistor (FinFET). The three-dimensional (3-D) technology computer-aided design (TCAD) simulations were performed to analyze the direct-current (DC) and radio-frequency (RF) characteristics for AlGaN/GaN FinFETs. The fin width ($W_{fin}$) and the height of GaN layer ($H_{GaN}$) are the design parameters used to improve the electrical performances of gate-recessed AlGaN/GaN FinFET.

Design Consideration of Bulk FinFETs with Locally-Separated-Channel Structures for Sub-50 nm DRAM Cell Transistors

  • Jung, Han-A-Reum;Park, Ki-Heung;Lee, Jong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.2
    • /
    • pp.156-163
    • /
    • 2008
  • We proposed a new $p^+/n^+$ gate locally-separated-channel (LSC) bulk FinFET which has vertically formed oxide region in the center of fin body, and device characteristics were optimized and compared with that of normal channel (NC) FinFET. Key device characteristics were investigated by changing length of $n^+$ poly-Si gate ($L_s$), the material filling the trench, and the width and length of the trench at a given gate length ($L_g$). Using 3-dimensional simulations, we confirmed that short-channel effects were properly suppressed although the fin width was the same as that of NC device. The LSC device having the trench non-overlapped with the source/drain diffusion region showed excellent $I_{off}$ suitable for sub-50 nm DRAM cell transistors. Design of the LSC devices were performed to get reasonable $L_s/L_g$ and channel fin width ($W_{cfin}$) at given $L_gs$ of 30 nm, 40 nm, and 50 nm.

Comparative Study on the Structural Dependence of Logic Gate Delays in Double-Gate and Triple-Gate FinFETs

  • Kim, Kwan-Young;Jang, Jae-Man;Yun, Dae-Youn;Kim, Dong-Myong;Kim, Dae-Hwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.2
    • /
    • pp.134-142
    • /
    • 2010
  • A comparative study on the trade-off between the drive current and the total gate capacitance in double-gate (DG) and triple-gate (TG) FinFETs is performed by using 3-D device simulation. As the first result, we found that the optimum ratio of the hardmask oxide thickness ($T_{mask}$) to the sidewall oxide thickness ($T_{ox}$) is $T_{mask}/T_{ox}$=10/2 nm for the minimum logic delay ($\tau$) while $T_{mask}/T_{ox}$=5/1~2 nm for the maximum intrinsic gate capacitance coupling ratio (ICR) with the fixed channel length ($L_G$) and the fin width ($W_{fin}$) under the short channel effect criterion. It means that the TG FinFET is not under the optimal condition in terms of the circuit performance. Second, under optimized $T_{mask}/T_{ox}$, the propagation delay ($\tau$) decreases with the increasing fin height $H_{fin}$. It means that the FinFET-based logic circuit operation goes into the drive current-dominant regime rather than the input gate load capacitance-dominant regime as $H_{fin}$ increases. In the end, the sensitivity of $\Delta\tau/{\Delta}H_{fin}$ or ${{\Delta}I_{ON}}'/{\Delta}H_{fin}$ decreases as $L_G/W_{fin}$ is scaled-down. However, $W_{fin}$ should be carefully designed especially in circuits that are strongly influenced by the self-capacitance or a physical layout because the scaling of $W_{fin}$ is followed by the increase of the self-capacitance portion in the total load capacitance.

Random Forest Model for Silicon-to-SPICE Gap and FinFET Design Attribute Identification

  • Won, Hyosig;Shimazu, Katsuhiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.358-365
    • /
    • 2016
  • We propose a novel application of random forest, a machine learning-based general classification algorithm, to analyze the influence of design attributes on the silicon-to-SPICE (S2S) gap. To improve modeling accuracy, we introduce magnification of learning data as well as randomization for the counting of design attributes to be used for each tree in the forest. From the automatically generated decision trees, we can extract the so-called importance and impact indices, which identify the most significant design attributes determining the S2S gap. We apply the proposed method to actual silicon data, and observe that the identified design attributes show a clear trend in the S2S gap. We finally unveil 10nm key fin-shaped field effect transistor (FinFET) structures that result in a large S2S gap using the measurement data from 10nm test vehicles specialized for model-hardware correlation.