• 제목/요약/키워드: Fin thickness

검색결과 119건 처리시간 0.023초

핀 바닥두께가 변하는 pin 핀의 해석 (Analysis of a Pin Fin with Variable Fin Base Thickness)

  • 강형석
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.642-645
    • /
    • 2008
  • A pin fin with variable fin base thickness is analysed by using the one dimensional analytic method. Heat loss and fin thermal resistance are presented as a function of the fin base thickness, pin fin outer radius and convection characteristic numbers ratio. The relationship between the fin outer radius and fin base thickness for the same amount of heat loss is shown. One of the results indicates the fin thermal resistance decreases as the fin outer radius and/or convection characteristic numbers ratio increase whereas the fin thermal resistance is independent on the variation of fin base thickness.

  • PDF

루우버핀형 열교환기의 공기측 열전달 특성에 관한 연구 (A Study on Heat Transfer Characteristics in the Air Side of Louvered Fin Heat Exchanger)

  • 김선정
    • 한국태양에너지학회 논문집
    • /
    • 제23권1호
    • /
    • pp.9-16
    • /
    • 2003
  • For the study of an effect that fin thickness and shape of heat exchanger have on the elevation of heat transfer efficiency, we make models of plate fin type heat exchanger and louvered fin type heat exchanger which was given a transformation of fin thickness in plate f)n type heat exchanger and louvered fin type heat exchanger which are often used now. And the effect of fin thickness on pressure drop and characteristics of heat transfer was experimented and analysed when air velocity and temperature of plate heating was a variable. The results of experiment shows below. Pressure drop shows larger in louvered fin type exchanger than in plate fin type exchanger, size of pressure drop shows like this order that fin thickness is 0.3mm, 0.2mm, 0.1mm. Mean heat transfer coefficient shows higher in louvered fin type exchanger than in plate fin type exchanger, size of mean heat transfer coefficient by fin thickness shows same in both case in louvered fin type heat exchanger and plate fin type exchanger like this order that fin thickness is 0.1mm, 0.2mm, 0.3mm.

핀 바닥 두께가 변화하는 역 사다리꼴 핀의 최적 설계 (Optimum Design of a Reversed Trapezoidal Fin with Variable Fin Base Thickness)

  • 강형석
    • 설비공학논문집
    • /
    • 제20권7호
    • /
    • pp.455-461
    • /
    • 2008
  • A reversed trapezoidal fin with variable fin base thickness is optimized using a two-dimensional analytical method. For the fin base boundary condition, instead of a constant temperature, heat transfer from the inside fluid to the fin base is considered. Heat loss from the fin tip is not ignored. The maximum heat loss, corresponding optimum fin effectiveness, fin length and base height are presented as a function of the fin base thickness, shape factor and volume.

열교환기 핀에서의 서리층 물성치에 대한 실험 상관식 (Empirical Correlations of Frost Properties on the Fin of a Heat Exchanger)

  • 김경민;이관수
    • 설비공학논문집
    • /
    • 제21권11호
    • /
    • pp.629-635
    • /
    • 2009
  • In this study, fin surface temperature and frost properties, i.e., frost thickness and frost surface temperature on a heat exchanger, were experimentally analyzed with different fin thicknesses, fin sizes and thermal conductivities of fin. As a result, it is found that fin thickness and thermal conductivity of fin should be considered in order to design an efficient heat exchanger fin. Correlations of dimensionless average frost properties were proposed as functions of dimensionless air temperature, dimensionless fin base temperature, dimensionless fin thickness, absolute air humidity, Reynolds number and Fourier number. The correlations predicted well the average frost thickness with a maximum error of 10.5% and frost surface temperature with a maximum difference of $0.89^{\circ}C$, respectively.

ANALYSIS OF A REVERSED TRAPEZOIDAL FIN USING A 2-D ANALYTIC METHOD

  • Kang, H.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제14권3호
    • /
    • pp.151-161
    • /
    • 2010
  • A reversed trapezoidal fin is analyzed using a two-dimensional analytical method. Heat loss from the reversed trapezoidal fin is presented as a function of the fin shape factor, fin base thickness and the fin base height. The relationship between the fin tip length and the convection characteristic number as well as that between the fin tip length and the fin base height for equal amounts of heat loss are analyzed. Also the relationship between the fin base thickness and the fin shape factor for equal amount of heat loss is presented. One of the results shows that the heat loss decreases linearly with the increase of the fin shape factor.

삼각 핀의 해석과 고정된 핀 바닥 높이에 기준한 최적화 (Analysis and Optimization based on the Fixed Fin Base Height for a Triangular Fin)

  • 강형석
    • 신재생에너지
    • /
    • 제3권1호
    • /
    • pp.13-19
    • /
    • 2007
  • A triangular fin with variable fin base thickness and base height is analyzed and optimized for the fixed fin base height using a two-dimensional analytical method. At the middle of the fin length, the variation of the temperature along the fin height is listed. The influences of the fin length, base thickness and base height on the heat loss and fin efficiency are analyzed, The optimum heat loss, corresponding optimum efficiency and optimum fin length as a function of the fin base thickness are presented. The optimum heat loss and optimum fin tip length as a function of the convection characteristic number are represented.

  • PDF

OPTIMUM PERFORMANCE AND DESIGN OF A RECTANGULAR FIN

  • Kang, H.S.
    • International Journal of Automotive Technology
    • /
    • 제8권6호
    • /
    • pp.705-711
    • /
    • 2007
  • A rectangular fin with a fluid in the inside wall is analyzed and optimized using a two-dimensional analytical method. The influence of the fluid convection characteristic number in the inside wall and the fin base thickness on the fin base temperature is listed. For the fixed fin volumes, the maximum heat loss and the corresponding optimum fin effectiveness and dimensions as a function of the fin base thickness, convection characteristic numbers ratio, convection characteristic number over the fin, fluid convection characteristic number in the inside wall, and the fin volume are represented. One of the results shows that both the optimum heat loss and the corresponding fin effectiveness increase as the fin base thickness decreases.

고정된 바깥반경에 기준한 pin 핀의 최적화 (Optimization of a Pin Fin Based on Fixed Outer Radius)

  • 강형석;최수근
    • 산업기술연구
    • /
    • 제28권B호
    • /
    • pp.3-7
    • /
    • 2008
  • A cylindrical pin fin with variable fin base thickness is optimized based on fixed outer radius by using the one dimensional analytic method. Heat loss from the pin fin with fixed outer radius is presented as a function of the fin length. The ratio of in length for optimum heat loss to that for the maximum heat loss is listed. The maximum heat loss and effectiveness and the fin length for the optimum heat loss are presented as a function of fin base thickness and outer radius. One of the results presents the maximum effectiveness decreases rapidly first and then decreases slowly as the fin outer radius increases.

  • PDF

내부유체를 가진 Pin Fin의 최적화 (고정된 핀 체적 기준) (Optimization of a Pin Fin with inside Fluid (based on Fixed Fin Volume))

  • 강형석
    • 산업기술연구
    • /
    • 제29권B호
    • /
    • pp.3-7
    • /
    • 2009
  • A cylindrical pin fin with inside fluid is optimized based on fixed fin volume by using the one dimensional analytic method. Heat loss from the fin and the pin fin radius for fixed fin volume is presented as a function of the fin length. Temperature variation of the fin with the variation of ambient and inside fluid convection characteristic numbers and fin base thickness is listed. The maximum heat loss at the practical fin length and corresponding optimum fin length and radius are presented as a function of fin base thickness, inside convection characteristic number, fin volume and ambient convection characteristic number. One of the results shows that the optimum pin fin shape becomes relatively fatter as the fin volume increases.

  • PDF

OPTIMZATION OF A PIN FIN BASED ON THE INCREASING RATE OF HEAT LOSS

  • Kang, Hyung-Suk
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제12권1호
    • /
    • pp.25-32
    • /
    • 2008
  • A pin fin is optimized based on the increasing rate of heat loss by using a two-dimensional analytic method. The optimum heat loss, corresponding optimum thermal resistance and fin length are presented as a function of the fin base thickness, convection characteristic numbers ratio, fin outer radius and ambient convection characteristic number. One of the results shows that both the optimum heat loss and fin length decrease linearly whereas the optimum thermal resistance increases very slightly with increase of the fin base thickness.

  • PDF