
J. KSIAM Vol.14, No.3, 151–161, 2010

ANALYSIS OF A REVERSED TRAPEZOIDAL FIN USING A 2-D ANALYTIC
METHOD

H. S. KANG

DEPT. OF MECHANICAL AND BIOMEDICAL ENGINEERING, KANGWON NATIONAL UNIV., SOUTH KOREA

E-mail address: hkang@kangwon.ac.kr

ABSTRACT. A reversed trapezoidal fin is analyzed using a two-dimensional analytical method.
Heat loss from the reversed trapezoidal fin is presented as a function of the fin shape factor, fin
base thickness and the fin base height. The relationship between the fin tip length and the
convection characteristic number as well as that between the fin tip length and the fin base
height for equal amounts of heat loss are analyzed. Also the relationship between the fin base
thickness and the fin shape factor for equal amount of heat loss is presented. One of the results
shows that the heat loss decreases linearly with the increase of the fin shape factor.

1. INTRODUCTION

Extended surfaces or fins are well known to be a simple and effective means of increasing
heat dissipation in many engineering and industrial applications such as the cooling of com-
bustion engines, electronic equipments, many kinds of heat exchangers, and so on. As a result,
a great deal of attention has been directed to the fin problems and many studies for the various
shapes of fins have been presented. The most commonly studied fins are longitudinal rectan-
gular, triangular, trapezoidal fins and the annular or circular fins. For example, Sen and Trinh
[1] studied the rate of heat loss from a rectangular fin governed by the power law-type temper-
ature dependence. Kang and Look [2] analyzed the trapezoidal fin with various lateral surface
slopes while Yeh [3] investigated the optimum dimensions of rectangular fins and cylindrical
pin fins. Kang and Look [4] presented the analysis of thermally asymmetric triangular fin using
a two-dimensional analytical method. Sikka and Iqbal [5] made an analysis of the heat transfer
characteristics of a circular fin dissipating heat from its surface by convection and radiation. In
all these studies, fin base temperature is given as a constant for the fin base boundary condition.

The effect of fin base thickness variation is considered for the common shape fin analysis in
some studies. For example, Abrate and Newnham [6] studied heat conduction in an array of
triangular fins with an attached wall using the finite element method. Kang [7] presented an
optimum procedure for a pin fin based on the increasing rate of heat loss. Recently, Kang [8]
optimized a pin fin with variable fin base thickness for fixed fin volumes.
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Also, studies on the more unique shape of the fin have been reported. For this kind of
paper, Bejan and Almogbel [9] reported the geometric (constructal) optimization of T-shaped
fin assemblies, where the objective is to maximize the global conductance of the assembly,
subject to total volume and fin-material constraints while Hashizume et al. [10] analyzed fin
efficiency of serrated fins and derived the theoretical fin efficiency in the form of a function
of modified Bessel functions. Kundu and Das [11] analyzed and optimized elliptical disk fins
using a semi-analytical technique.

In this study, a reversed trapezoidal with various fin lateral surface slopes is analyzed using a
two dimensional analytic method. For this analysis, both the fin base thickness and base height
can be varied. Therefore, the thermal resistance from the inside wall to the fin base can be
changed due to the variation of fin base thickness and the fin height. Under these conditions,
heat loss from the reversed trapezoidal fin is presented as a function of the fin shape factor,
fin base thickness and the fin base height. The relationship between the fin tip length and the
convection characteristic number as well as that between the fin tip length and the fin base
height for equal amounts of heat loss are analyzed. Also the relationship between the fin base
thickness and the fin shape factor for equal amount of heat loss is presented.

2. A 2-D ANALYTICAL METHOD

The schematic diagram of a reversed trapezoidal fin is shown in Fig. 1. For this schematic
diagram, dimensionless two-dimensional governing differential equation under steady state is

∂2θ

∂X2
+

∂2θ

∂Y 2
= 0. (2.1)

FIGURE 1. Geometry of a reversed trapezoidal fin
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Three boundary conditions and one energy balance condition are required to solve the gov-
erning differential equation and these conditions are given as Eqs. (2.2)∼(2.5).

∂θ

∂X
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X=Lb

+
1− θ|X=Lb

Lb
= 0 (2.2)
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= 0 (2.3)
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= 0 (2.4)

−
∫ Lh

0

∂θ

∂X

∣∣∣∣
X=Lb

dY = M ·
∫ s(Le−Lb)+Lh

Lh

θ
√
(1/s)2 + 1 dY

−
∫ s(Le−Lb)+Lh

0

∂θ

∂X

∣∣∣∣
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dY (2.5)

Fin base boundary condition is represented by Eq. (2.2) and it means that heat conduction
from the inner wall to the fin base and heat conduction through the fin base are the same. There
is no heat transfer through the center surface, as the shape of the fin and ambient conditions
are symmetric, and this boundary condition is written by Eq. (2.3). Equation (2.4) is a fin
tip boundary condition and it means physically that heat conduction through the tip is equal
to the heat transfer by convection from the tip surface. Finally, energy balance equation (2.5)
indicates that the energy conducted into the reversed trapezoidal fin at the upper half base must
escape from the fin by convection via the upper flat sloped lateral surface and by conduction to
the upper half fin tip.

For a rectangular fin case (i.e. ξ=1 or s=0), the governing Eq. (2.1) and Eqs. (2.2)-(2.4) for
three boundary conditions are also used except that Eq. (2.5) for the energy balance condition
is replaced into Eq. (2.6) for the fin top boundary condition.

∂θ

∂Y

∣∣∣∣
Y=Lh

+M · θ|Y=Lh
= 0 (2.6)

When Eq. (2.1) with three boundary conditions (2.2), (2.3) and (2.4) are solved, the temperature
distribution θ(X, Y) within the reversed trapezoidal fin can be obtained using the separation of
variables procedure. The result is

θ(X,Y ) =
∞∑

n=1

g1(λn) · f(X) · cos(λnY )

g2(λn) + g3(λn)
(2.7)

where,
f(X) = cosh(λnX) + g4(λn) · sinh(λnX)

g1(λn) =
4 sin(λnLh)

2λnLh + sin(2λnLh)

g2(λn) = cosh(λnLb)− Lb · λn · sinh(λnLb)
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g3(λn) = g4(λn) · {sinh(λnLb)− Lb · λn · cosh(λnLb)}

g4(λn) = −λn · tanh(λnLe) +M

λn +M · tanh(λnLe)
.

The eigenvalues λn can be obtained using Eq. (2.8), which is a arranged form of Eq. (2.5).
0 = g5(λn)− g6(λn) + g7(λn)[{g8(λn) + g9(λn)} · {g10(λn) + g11(λn)− g12(λn)

−g13(λn)}+ {g14(λn) + g15(λn)} · {g16(λn) + g17(λn)− g18(λn)− g19(λn)}] (2.8)

where,
g5(λn) = {sinh(λnLb) + g4(λn) · cosh(λnLb)} sin(λnLh)

g6(λn) = {sinh(λnLe) + g4(λn) · cosh(λnLe)} sin{(λn(2− ξ)Lh}
g7(λn) = M/(λn ·

√
1 + s2)

g8(λn) = cosh{λn(Lb − Lh

s
)}

g9(λn) = g4(λn) · sinh{λn(Lb − Lh

s
)}

g10(λn) = sinh{λn

s
(2− ξ)Lh} · cos{λn(2− ξ)Lh}

g11(λn) = s · cosh{λn

s
(2− ξ)Lh} · sin{λn(2− ξ)Lh}

g13(λn) = s · sin(λnLh) cosh(
λnLh

s
)

g14(λn) = sinh{λn(Lb − Lh

s
)}

g15(λn) = g4(λn) cosh{λn(Lb − Lh

s
)}

g16(λn) = cosh{λn

s
(2− ξ)Lh} · cos{λn(2− ξ)Lh}

g17(λn) = s · sinh{λn

s
(2− ξ)Lh} · sin{λn(2− ξ)Lh}

g18(λn) = cos(λnLh) cosh(
λnLh

s
)

g19(λn) = s · sin(λnLh) sinh(
λnLh

s
).

The first eigenvalue λ1 is obtained by using an incremental search method from Eq. (2.8) and
then the rest eigenvalues λn (n=2, 3, 4, · · ·) are calculated from Eq. (2.10). That is, the direct
application of the orthogonality principle in the separation of variables method produces Eq.
(2.9).

∫ Lh

0
cos (λ1Y ) cos (λnY ) dY =

sin {(λ1 − λn)Lh}
2 (λ1 − λn)

+
sin {(λ1 + λn)Lh}

2 (λ1 + λn)
= 0 (2.9)
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Algebraic manipulations of Eq. (2.9) produces Eq. (2.10) from which the eigenvalues λn (n=2,
3, 4, · · ·) may be more easily calculated by using the Newton-Raphson method.

λn = (2λ1 + λn)− 2 (λ1 + λn)
tan (λnLh)

tan (λ1Lh) + tan (λnLh)
(2.10)

The eigenvalues λn (n=1, 2, 3, 4, · · ·) can be calculated using Eq. (2.11) that is derived from
Eq. (2.6) for a rectangular fin case.

λn · tan(λn) = M (2.11)

The heat loss conducted into the fin through the fin base for both the reversed trapezoidal and
rectangular fins is calculated by

q = −2

∫ lh

0
k
∂T

∂x

∣∣∣∣
x=lb

lwdy.

Then, the dimensionless heat loss from the reversed trapezoidal fin is denoted by

Q =
q

kϕilw
= −2

∞∑

n=1

g1(λn) · g5(λn)

g2(λn) + g3(λn)
.

3. RESULTS AND DISCUSSIONS

For two different fin base height and three different fin tip length cases, the temperature
profile along the fin center line is represented in Fig. 2. The normalized position of X, NPX, is
given as (X−Lb)/(Le−Lb) so that NPX=0 represents the position at the fin base and NPX=1

FIGURE 2. Dimensionless temperature profile along the normalized position
of X (M=0.1, Lb=.1, ξ=0.5)
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θ(NPY)/θ(NPY=0) (%)
NPY ξ = 0 ξ = 0.5 ξ = 1
0.2 99.14 99.54 99.81
0.4 96.57 98.16 99.23
0.6 92.34 95.88 98.26
0.8 86.52 92.71 96.92
1.0 79.20 88.69 95.20

TABLE 1. Temperature ratio with the variations of NPY at X = Le (M =
0.2, Lb = 0.1, Le = 2.1, Lh = 0.5)

at the fin tip. As the fin base height increases from 0.2 to 0.4, the fin temperature along the fin
center line increases for all three values of Le. It can be inferred that, at the center of the fin
tip, the difference between the temperature for Lh=0.2 and that for Lh=0.4 increases first and
then decreases as the fin tip length increases from 1 to 4.

Table 1 lists the ratio of temperature with the variation of normalized poison of Y [i.e. NPY
=Y/{(2-ξ)Lh}] at the fin tip. The shape of the fin becomes rectangular for ξ=1 and it becomes
the reversed trapezoidal fin for which the fin tip height is twice the fin base height in the case
of ξ=0. This table illustrates that the ratio of temperature decreases more remarkably with the
increase of NPY as the fin shape factor decreases from 1 to 0. It also can be noted that the ratio
decreases as ξ decreases for the fixed value of NPY.

Figure 3 represents the dimensionless heat loss as a function of the fin shape factor for
different values of dimensionless fin tip length. As expected, the heat loss decreases as the fin

FIGURE 3. Heat loss as a function of the fin shape factor (Lb=0.1, Lh=0.1)
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FIGURE 4. Heat loss as a function of the fin base thickness (M = 0.1, ξ = 0.5)

shape factor increases due to the decrease of heat transfer area and this phenomenon is more
remarkable as the fin tip length decreases. Therefore it can be inferred that the effect of ξ on the
heat loss disappears for the long fin enough. It is observed that the heat loss decreases almost
linearly with the increase of ξ for all given values of Le and M.

The effect of dimensionless fin base thickness on the heat loss is presented in Fig. 4. The
fin base thickness has a significant influence on the heat loss because the fin base temperature
decreases due to the increased thermal resistance as the fin base thickness increases. It is found
that the increase of fin base thickness will reduce the heat loss almost linearly even though the
actual fin length (i.e. Le − Lb) remains constant. It also shows that the effect of the fin base
thickness on the heat loss becomes a little larger as the fin length increases from 1 to 2 for fixed
fin base height.

Figure 5 depicts the dimensionless heat loss as a function of the dimensionless fin base
height for two different fin length and three different convection characteristic numbers. For
all given convection characteristic numbers, the heat loss increases parabolically first and then
increases linearly for Le-Lb=2 while that increases linearly for Le-Lb=0.5 as the fin base height
increases.

Figure 6 shows the relationship between dimensionless fin tip length and fin base height for
equal amounts of heat loss based on the value of Le=0.8 and Lh=0.2 in the case of M=0.01,
0.05 and 0.1. The value of fin tip length decreases almost linearly in the case of M=0.01 while
that decreases parabolically for M=0.1 as the fin base height increases from 0.1 to 0.2. It also
shows that the fin base height increases as M increases in the range of Lh < 0.2 while that
decreases with the increase of M for Lh > 0.2 when the fin tip length is fixed.
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FIGURE 5. Heat loss as a function of the fin base height (ξ=0.5, Lb=0.1)

FIGURE 6. Relationship between the fin tip length and fin base height for
equal amounts of heat loss (ξ=0.5, Lb=0.1)

Figure 7 presents the relationship between the fin tip length and the convection characteristic
number for equal amounts of heat loss based on the value of Le=2 and M=0.05 for three values
of the fin shape factor. The value of Le decreases parabolically as M increases for all three
values of the fin shape factor. It can be noted that the slope of the curve steeps as the fin shape
factor decreases from 1 to 0. It means physically that the fin length varies more remarkably
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FIGURE 7. Relationship between the fin tip length and convection character-
istic number for equal amounts of heat loss (Lb=0.1, Lh=0.4)

FIGURE 8. Relationship between the fin base thickness and fin shape factor
for equal amounts of heat loss (M = 0.1, Lh = 0.2)

with the variation of the convection characteristic number to produce the equal amount of heat
loss as the shape of the fin changes from the rectangular fin through the reversed trapezoidal
fin with short fin tip height to that with long fin tip height.
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The relationship between the fin base thickness and the fin shape factor for equal amounts of
heat loss based on the value of Lb=0.2 and ξ=0.25 for three values of fin length is depicted in
Fig. 8. The value of Lb decreases almost linearly with the increase of ξ for all three values of
the fin length. It shows that the variation of Lb with the variation of ξ becomes less remarkable
as the fin length increases. From this phenomenon, physically it can be inferred that the fin
shape has no effect on the fin base thickness for equal amounts of heat loss when the fin length
is very long.

4. CONCLUSIONS

From this two-dimensional analysis of a reversed trapezoidal fin, the following conclusions
can be drawn:

(1) Heat loss from the reversed trapezoidal fin decreases linearly as the fin shape factor
and/or fin base thickness increases.

(2) When other variables are fixed, fin tip length decreases parabolically as the convection
characteristic number increases for equal amounts of heat loss.

(3) For the relatively short fin, the fin base thickness decreases remarkably with the in-
crease of the fin shape factor to transfer equal amounts of heat loss.

NOMENCLATURE

h : heat transfer coefficient over the fin [W/m2 ◦C]
k : thermal conductivity of the fin material [W/m ◦C]
lb : fin base thickness [m]
Lb : dimensionless fin base thickness, lb/lc
lc : characteristic length [m]
le : fin tip length [m]
Le : dimensionless fin tip length, le/lc
lh : one half fin base height [m]
Lh : dimensionless one half fin base height, lh/lc
lw : fin width [m]
M : convection characteristic number, (h lc)/k
q : heat loss from the fin [W]
Q : dimensionless heat loss from the fin, q/(k lwϕi)
s : fin lateral surface slope, {(1− ξ)lh}/(le − lb)
T : fin temperature [◦C]
Tb : fin base temperature [◦C]
Ti : inside wall temperature [◦C]
T∞ : ambient temperature [◦C]
x : length directional variable [m]
X : dimensionless length directional variable, x/lc
y : height directional variable [m]
Y : dimensionless height directional variable, y/lc
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Greek symbol

θ : dimensionless temperature, (T − T∞)/(Ti − T∞)
λn : eigenvalues (n = 1, 2, 3, · · ·)
ϕi : adjusted temperature of inside wall [◦C], (Ti − T∞)
ξ : fin shape factor, (0 ≤ ξ ≤ 1)

Subscript

b: fin base
c: characteristic
e: fin tip
h: fin base height
i: inside wall
w: fin width
∞: surrounding
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