• Title/Summary/Keyword: Film layers

Search Result 1,385, Processing Time 0.031 seconds

Optical Properties of $TiO_2/M/Ag/M/TiO_2$ Films with Different Diffusion Barrier Layers (확산방지막에 따른 $TiO_2/M/Ag/M/TiO_2$ 투명 열절연 박막의 광학적 성질)

  • 이경준;이진구;박주동;김진현;김영환;오태성
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.2
    • /
    • pp.147-155
    • /
    • 1996
  • Optical properties of $TiO_2/M/Ag/M/TiO_2$ films have been changed with the diffusion barrier metal M. Optimum opticla properties of $TiO_2/M/Ag/M/TiO_2$ as the transparent heat mirror film, could be obtained with Ti among diffusion barrier metals of Ti, Cu, Zr and Al. $TiO_2/M/Ag/M/TiO_2$ film, which was fabricated by sputtering of 18 nm-thick $TiO_2$ and Ag, and 4nm-thick Ti, showed maximum transimittance of 89% at visible wavelength and infrared reflectance of 97% at wavelength of 3000 nm. Optical properties of this film was not degraded by Xenon-sunshine weather test for 240 hours. For specimens with barrier layers of Cu, Zr, and Al, degradation of optical properties by weather test was increased in a sequence of films with Cu, Zr, and Al barrier layers.

  • PDF

Dispersive White-light Interferometry for in-situ Volumetric Thickness Profile of Thin-film Layers and a refractive index (분산형 백색광 간섭계를 이용한 미세 박막 구조물의 삼차원 두께 형상 및 굴절률의 실시간 측정)

  • Ghim Y.S.;Kim S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.23-24
    • /
    • 2006
  • We present a dispersive scheme of white-light interferometry that enables not only to perform tomographical measurements of thin-film layers but also to measure a refractive index without mechanical depth scanning. The interferometry is found useful particularly for in-situ 3-D inspection of micro-engineered surfaces such as liquid crystal displays, semi-conductor and MEMS structure, which requires for high-speed implementation of 3-D surface metrology.

  • PDF

An Electrical Characteristics on the Pentacene-Based Organic Thin-Film Transistors using PVA Alignment Layer (PVA 배열층을 이용한 펜타신 유기 박막 트랜지스터의 전기적 특성)

  • Jun, Hyeon-Sung;Oh, Hwan-Sool
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.3
    • /
    • pp.177-182
    • /
    • 2010
  • The pentacene-based organic thin film transistors(OTFTs) using polyvinylalcohol(PVA) alignment layer were fabricated on the $SiO_2$ evaporated to n-type (111) Si substrates. The pentacene film was deposited by thermally evaporated at $10^{-7}$ torr. X-ray diffraction (XRD) and atomic force microscope(AFM) measurement showed pentacene film which deposited on rubbed PVA layers were partially crystallized at (001) plane. The pentacene OTFTs with PVA layers rubbed perpendicular to the direction of current flow was shown to align better orientation than parallel rubbed case and thus to enhance the mobility and saturation current by a factor of 2.3 respectively. We obtained mobility by 0.026 $cm^2$/Vs and on-off current ratio by ${\sim}10^8$.

An Estimation on Characteristics of SOG Film for MEMS Application (MEMS 응용을 위한 SOG 막의 특성 평가)

  • Kim, Hyoung-Dong;Lee, Seong-Jun;Pack, Seung-Ho;Kim, Chul-Ju
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.609-611
    • /
    • 1995
  • In this study, we experimented the properties of SOG film as sacrificials layers in surface micromachining and made $SiO_2$ films through spin, bake, cure process. When we culled SOG films once, SOG film thickness is 1000 $\sim$ 3000 ${\AA}$. Then we coaled 200-${\AA}$ SOG film on 9000 ${\AA}$-CVD oxide and then we fabricated test structure, cantilever and ring/beam structure. We estimated deformed structure by SEM. As the results, The deformation of the structure layer in the SOG-coated sacrificial layers is small compared with that or the structure layer on CVD oxide or PSG. In the future, we use multi coated SOG films, SOG film become adequate material as sacrificial layer.

  • PDF

A Study on Adhesion and Electro-optical Properties of ITO Films Deposited on Flexible PET Substrates with Deposition of SiO2 Buffer Layers (PET 기판 위에 SiO2 버퍼층 증착에 따른 ITO 박막의 부착 및 전기적 광학적 특성 연구)

  • Kang, Ja-Youn;Kim, Dong-Won;Cho, Kyu-Il;Woo, Byung-Il;Yun, Hwan-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • Using an evaporation system, $SiO_2$ was deposited as a buffer layer between a PET substrate and a ITO layer and then ITO/$SiO_2$/PET layers were annealed for 1.5 hours at the temperature of $180^{\circ}C$. Adhesion and electro-optical properties of ITO films were studied with thickness variance of a $SiO_2$ buffer layer. As a result of introduction of the $SiO_2$ buffer layer, sheet resistance and resistivity increased and a ITO film with optimum sheet resistance ($529.3{\Omega}/square$) for an upper ITO film of resistive type touch panel could be obtained when $SiO_2$ of $50{\AA}$ was deposited. And it was found that ITO films with $SiO_2$ buffer layer have higher transmittance of $88{\sim}90%$ at 550 nm wavelength than ITO films with no buffer layers and the transmittance was enhanced as $SiO_2$ thickness increased from $50{\AA}$ to $100{\AA}$. Adhesion property of ITO films with $SiO_2$ buffer layers became better than ITO films with no buffer layers and this property was independent of $SiO_2$ thickness variance ($50{\sim}100{\AA}$). By depositing a $SiO_2$ buffer layer of $50{\AA}$ on the PET substrate and sputtering a ITO thin film on the layer, a ITO film with enhanced adhesion, electro-optical properties could be obtained.

Fabrication of Highly Efficient Nanocrystalline Silicon Thin-Film Solar Cells Using Flexible Substrates (유연기판을 이용한 고효율 나노결정질 실리콘 박막 태양전지 제조)

  • Jang, Eunseok;Kim, Sol Ji;Lee, Ji Eun;Ahn, Seung Kyu;Park, Joo Hyung;Cho, Jun-Sik
    • Current Photovoltaic Research
    • /
    • v.2 no.3
    • /
    • pp.103-109
    • /
    • 2014
  • Highly efficient hydrogenated nanocrystalline silicon (nc-Si:H) thin-film solar cells were prepared on flexible stainless steel substrates using plasma-enhanced chemical vapor deposition. To enhance the performance of solar cells, material properties of back reflectors, n-doped seed layers and wide bandgap nc-SiC:H window layers were optimized. The light scattering efficiency of Ag back reflectors was improved by increasing the surface roughness of the films deposited at elevated substrate temperatures. Using the n-doped seed layers with high crystallinity, the initial crystal growth of intrinsic nc-Si:H absorber layers was improved, resulting in the elimination of the defect-dense amorphous regions at the n/i interfaces. The nc-SiC:H window layers with high bandgap over 2.2 eV were deposited under high hydrogen dilution conditions. The vertical current flow of the films was enhanced by the formation of Si nanocrystallites in the amorphous SiC:H matrix. Under optimized conditions, a high conversion efficiency of 9.13% ($V_{oc}=0.52$, $J_{sc}=25.45mA/cm^2$, FF = 0.69) was achieved for the flexible nc-Si:H thin-film solar cells.

Spray Pyrolysis Deposition of Zinc Oxide Thin Films by ZnO Buffer Layer (ZnO buffer 층을 이용한 초음파 분무열분해 ZnO 박막 증착)

  • Han, In Sub;Park, Il-Kyu
    • Korean Journal of Materials Research
    • /
    • v.27 no.8
    • /
    • pp.403-408
    • /
    • 2017
  • We investigated the effect of ZnO buffer layer on the formation of ZnO thin film by ultrasonic assisted spray pyrolysis deposition. ZnO buffer layer was formed by wet solution method, which was repeated several times. Structural and optical properties of the ZnO thin films deposited on the ZnO buffer layers with various cycles and at various temperatures were investigated by field-emission scanning electron microscopy, X-ray diffraction, and photoluminescence spectrum analysis. The structural investigations showed that three-dimensional island shaped ZnO was formed on the bare Si substrate without buffer layers, while two-dimensional ZnO thin film was deposited on the ZnO buffer layers. In addition, structural and optical investigations showed that the crystalline quality of ZnO thin film was improved by introducing the buffer layers. This improvement was attributed to the modulation of the surface energy of the Si surface by the ZnO buffer layer, which finally resulted in a modification of the growth mode from three to two-dimensional.

The Performance of Dye-sensitized Solar Cell Using Light-scattering Layer (광산란층을 이용한 염료감응형 태양전지의 특성)

  • Eom, Tae-Sung;Choi, Hyung-Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.7
    • /
    • pp.558-562
    • /
    • 2012
  • As an alternative energy, Dye-sensitized solar cells (DSSCs) have received much attention due to low cost manufacturing procedure and high energy consumption rate. Incorporating scattering centers in the nanocrystalline photoanode or additional scattering layers on the nanocrystalline photoanode is an effective way to enhance the light harvest efficiency of the photoanode and the performance of dye-sensitized solar cells (DSSCs). The light scattering abilities of these scattering layers also depend on the relative sizes and phase of the particles in the layers. A higher surface area is normally obtained using large particle sizes. Therefore, transparent high surface area $TiO_2$ layers and an additional scattering layer consisting of $TiO_2$-Rutile 500 nm paste with relatively larger particles are attractive. In this work, we investigates the applicability of a hybrid $TiO_2$ electrode (or a working electrode with a light scattering layer) in a DSSCs. We fabrication various thin film using $TiO_2$ paste 20 nm and $TiO_2$ paste 500 nm. As a result, the efficiency of the a single structure thin film was 3.35% and the efficiency as scattering layer of hybrid structure thin film was 4.36%, 4.73%.

Fluorine Penetration Characteristics on Various FSG Capping Layers (FSG Capping 레이어들에서의 플루오르 침투 특성)

  • Lee, Do-Won;Kim, Nam-Hoon;Kim, Sang-Yong;Eom, Joon-Chul;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.26-29
    • /
    • 2004
  • High density plasma fluorinated silicate glass (HDP FSG) is used as a gap fill film for metal-to-metal space because of many advantages. However, FSG films can cause critical problems such as bonding issue of top metal at package, metal contamination, metal peel-off, and so on. It is known that these problems are caused by fluorine penetration out of FSG film. To prevent it, FSG capping layers such like SRO (Silicon Rich Oxide) are needed. In this study, their characteristics and a capability to block fluorine penetration for various FSG capping layers are investigated. Normal stress and High stress due to denser film. While heat treatment to PETEOS caused lower blocking against fluorine penetration, it had insignificant effect on SiN. Compared with other layers, SRO using ARC chamber and SiN were shown a better performance to block fluorine penetration.

  • PDF