Browse > Article
http://dx.doi.org/10.4313/JKEM.2012.25.7.558

The Performance of Dye-sensitized Solar Cell Using Light-scattering Layer  

Eom, Tae-Sung (Department of Electrical Engineering, Gachon University)
Choi, Hyung-Wook (Department of Electrical Engineering, Gachon University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.25, no.7, 2012 , pp. 558-562 More about this Journal
Abstract
As an alternative energy, Dye-sensitized solar cells (DSSCs) have received much attention due to low cost manufacturing procedure and high energy consumption rate. Incorporating scattering centers in the nanocrystalline photoanode or additional scattering layers on the nanocrystalline photoanode is an effective way to enhance the light harvest efficiency of the photoanode and the performance of dye-sensitized solar cells (DSSCs). The light scattering abilities of these scattering layers also depend on the relative sizes and phase of the particles in the layers. A higher surface area is normally obtained using large particle sizes. Therefore, transparent high surface area $TiO_2$ layers and an additional scattering layer consisting of $TiO_2$-Rutile 500 nm paste with relatively larger particles are attractive. In this work, we investigates the applicability of a hybrid $TiO_2$ electrode (or a working electrode with a light scattering layer) in a DSSCs. We fabrication various thin film using $TiO_2$ paste 20 nm and $TiO_2$ paste 500 nm. As a result, the efficiency of the a single structure thin film was 3.35% and the efficiency as scattering layer of hybrid structure thin film was 4.36%, 4.73%.
Keywords
DSSCs; $TiO_2$; Scattering layer; Screen printing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. O'Regan and M. Gratzel, Nature, 353, 737 (1991).   DOI
2 M. K. Nazeeruddi, A. Kay, I. Rodicio, R. Humpbry-Baker, E. Miiller, P. Liska, N. Vlachopoulos, and M. Gratzel, J. Am. Chem. Soc., 115, 6382 (1993).   DOI   ScienceOn
3 M. Gratzel, Inorg. Chem., 44, 6841 (2005).   DOI   ScienceOn
4 M. Gratzel, Nature, 414, 338 (2001).   DOI   ScienceOn
5 K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa, Sol. Energ. Mat. Sol. Cells, 77, 89 (2003).   DOI   ScienceOn
6 H. Matsui, K. Okada, and T. Kawashima, T. Ezure, N. Tanabe, R. Kawno, and M. Watanabe, J. Photoch. Photobio. A: Chemistry, 164, 129 (2004).   DOI
7 S. S. Kim, Y. C. Nah, Y. Y. Noh, J. Jo, and D. Y. Kim, Electrochim. Acta, 51, 3814 (2006).   DOI
8 M. Gratzel, Prog. Photovoltaics: Res. Appl., 8, 171 (2000).   DOI   ScienceOn
9 F. C. Krebs and M. Biancardo, Sol. Energ. Mat. Sol. Cells, 90, 142 (2006).   DOI
10 S. Hore, C. Vetter, R. Kern, H. Smit, and A. Hinsch., Sol. Energ. Mat. Sol. Cells, 90, 1176 (2006).   DOI
11 J. Ferber and J. Luther., Sol. Energ. Mat. Sol. Cells, 54, 265 (1998).   DOI   ScienceOn
12 Clifford, J. N. E. Palomares, Md. K. Nazeeruddin, M. Gratzel, J. Nelson, X. Li, N. J. Long, and J. R. Durrant, J. Am. Chem. Soc., 126, 5225 (2004).   DOI
13 A. Ishimaru, Wave Propagation and Scattering in Random Media (The Institute of Electrical and Electronics Engineers, Inc. New York and Oxford University Press, 1978)
14 H. J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N. G. Park, Inorg. Chim. Acta, 361, 677 (2008).   DOI
15 S. Ito, M. K. Nazreeruddin, M. Gratzel, T. Mizuno, Atsushi, Tanaka, and T. Koyanagi, IJP, 517609, 8 (2009).