• Title/Summary/Keyword: Film Education

Search Result 480, Processing Time 0.028 seconds

Fabrication of IZO thin films for flexible organic light emitting diodes by RF magnetron sputtering

  • Jun, D.G.;Cho, H.H.;Jo, D.B.;Lee, K.M.
    • Journal of Ceramic Processing Research
    • /
    • v.13 no.spc2
    • /
    • pp.260-264
    • /
    • 2012
  • We have investigated the effect of ambient gases on the structural, electrical, and optical characteristics of IZO thin films intended for use as anode contacts in the organic light emitting diodes (OLED) devices. These IZO thin films were deposited on the PES film by radio frequency (RF) magnetron sputtering under different ambient gases (Ar, Ar + O2, and Ar + H2) at room temperature. In order to investigate the influences of the ambient gases, the flow rate of oxygen and hydrogen in argon has been changed from 0.1 sccm to 0.5 sccm, respectively. All the IZO thin film has an (222) preferential orientation regardless of ambient gases. The electrical resistivity of the IZO film increased with increasing O2 flow rate, whereas the electrical resistivity decreased sharply under an Ar + H2 atmosphere and was nearly similar regardless of the H2 flow rate. The change of electrical resistivity with changes in the ambient gas composition was mainly interpreted in terms of the charge carrier concentration rather than the charge carrier mobility. All the films showed the average transmittance over 85% in the visible range. The OLED device was fabricated with different IZO substrates made with the configuration of IZO/α-NPD/DPVB/Alq3/LiF/Al in order to elucidate the performance of the IZO substrate. The current density and the luminance of OLED devices with IZO thin films deposited in 0.5 sccm H2 ambient gas are the highest amongst all other films.

On-site Human Resource Education for Film Industry via Workplace Learning and Mentoring (일터학습과 멘토링을 통한 영화 현장인력 교육)

  • Lee, Hyeon-Seung
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.1
    • /
    • pp.498-511
    • /
    • 2013
  • It is time to extensively reshuffle domestic film industry, which has grown rapidly in recent years. Above all, a most urgent task for domestic film industry is to train specialized staff by working out a foundation for on-site human resource education. For this, it is necessary to review the existing apprenticeship system-a major educational system for domestic film industry for a long time-and then work out a reasonable substitute which can overcome its limitations and succeed its advantages. In other words, it is necessary to switch a current perpendicular rank system, a basis of apprenticeship system, to a horizontal specialized staff system and then establish an industrial information network with which the current status of on-site human resources can be understood and which can comprehensively manage their career, promotion and wages. In this regard, this study suggested the introduction of workplace learning and mentoring as a new system for on-site human resource education for film industry, in order to work out an educational system that could maintain abundant on-site experience and the sense of emotional tie with fellow workers-the advantages of apprenticeship system-and realize a more systematic and specialized workplace learning.

A Study on the Application of Ag Nano-Dots Structure to Improve the Light Trapping Effect of Crystalline Silicon Solar Cell (단결정 실리콘 태양전지의 광 포획 효과 개선을 위한 Ag nano-dots 구조 적용 연구)

  • Choi, Jeong-Ho;Roh, Si-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.3
    • /
    • pp.19-24
    • /
    • 2019
  • In this study, the Ag nano-dots structure was applied to the textured wafer surface to improve the light trapping effect of crystalline silicon solar cell. The Ag nano-dots structure was formed by the annealing of Ag thin film. Ag thin film deposition was performed using a thermal evaporator. The effect of light trapping was compared and analyzed through light reflectance measurements. The optimization process of the Ag nano-dots structure was made by varying the thickness of Ag thin film, the annealing temperature and time. The thickness of Ag thin films was in the range of 5 ~ 20 nm. The annealing temperature was in the range of 450~650℃ and the annealing time was in the range of 30 ~ 60 minutes. As a result, the light reflectance of 10 nm Ag thin film annealed at 650℃ for 30 minutes showed the lowest value of about 9.67%. This is a value that is about 3.37% lower than the light reflectance of the sample that has undergone only the texturing process. Finally, the change of the light reflectance by the HF treatment of the sample on which the Ag nano-dots structure was formed was investigated. The HF treatment time was in the range of 0 ~ 120 seconds. As a result, the light reflectance decreased by about 0.41% due to the HF treatment for 75 seconds.

Experimental study on air-water countercurrent flow limitation in a vertical tube based on measurement of film thickness behavior

  • Wan, Jie;Sun, Wan;Deng, Jian;Pan, Liang-ming;Ding, Shu-hua
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1821-1833
    • /
    • 2021
  • The gas-liquid counter-current flow limitation (CCFL) is closely related to efficient and safety operation of many equipment in industrial cycle. Air-water countercurrent flow experiments were performed in a tube with diameter of 25 mm to understand the triggering mechanism of CCFL. A parallel electrode probe was utilized to measure film thickness whereby the time domain and frequency domain characteristics of liquid film was obtained. The amplitude of the interface wave is small at low liquid flow rate while it becomes large at high liquid flow rate after being disturbed by the airflow. The spectral characteristic curve shows a peak-shaped distribution. The crest exists between 0 and 10 Hz and the amplitude decreases with the frequency increase. The analysis of visual observation and characteristic of film thickness indicate that two flooding mechanisms were identified at low and high liquid flow rate, respectively. At low liquid flow rate, the interfacial waves upward propagation is responsible for the formation of CCFL onset. While flooding at high liquid flow rate takes place as a direct consequence of the liquid bridging in tube due to the turbulent flow pattern. Moreover, it is believed that there is a transition region between the low and high liquid flow rate.

QSEN Competencies in Pre-licensure Nursing Education and the Application to Cinenurducation (간호학생의 질 향상과 안전교육(QSEN) 역량개발을 위한 영화간호교육의 적용)

  • Oh, Jina;Shin, Hyewon;De Gagne, Jennie C.
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.18 no.3
    • /
    • pp.474-485
    • /
    • 2012
  • Purpose: The Quality and Safety Education for Nurses [QSEN] initiative group has identified six competencies (patient-centered care, teamwork and collaboration, evidence-based practice, quality improvement, safety, and informatics) for pre-licensure nursing education along with related knowledge, skills, and attitudes for each competency. The purpose of this article is to illustrate a teaching strategy that uses films to demonstrate the QSEN competencies in undergraduate nursing students. Method: A literature review was conducted to define QSEN competencies, and six feature-length commercial movies were selected through a systematic process. We provided film titles and their synopses that can be useful in teaching the QSEN six competencies to undergraduate nursing students. Results: Patch Adams for patient-centered care, Wit for teamwork and collaboration, Lorenzo's Oil for evidence-based practice, Am$\acute{e}$lie for quality improvement, Blindness and The Island for informatics can be applied in nursing classroom practices. Conclusion: Establishing the connection between QSEN competencies and cinenurducation is novel, yet it would provide a unique opportunity for nurse educators seeking to overcome the challenge of better preparing future nurses. In future studies, additional films should be considered to enhance nursing educational strategies.

Characteristics of Hydrogenation and Electronic Properties of Thin Film Y-Hx

  • Cho, Young-Sin;Jee, Chan-Soo;Kim, Sun-Hee;Yoon, Jong-Hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.3 no.2
    • /
    • pp.35-43
    • /
    • 1992
  • Thin Film yttrium, 500 nm thick, was prepared by electron beam evaportion on sapphire substrate. Film was hydrogenated at room temperature upto 1 bar hydorgen pressure without any activation process. Electrical resistivity was measured by four-point DC method in the temperature range between room temperature and 30 K for various hydorgen concentration x = 0 to 2.924 of $YH_x$ sample. Temperature dependent resistance of $YH_{2\;924}$ shows low temperature minmum at 105K ($36{\mu}{\Omega}cm$ deep), the metal-semiconductor transition at 260K, and a hysteresis, which are similar behavior to bulk $YH_x$(x>2) experimental results.

  • PDF

Development of Plastic Film Type Submersion Sensor (플라스틱 필름형 침수센서 개발)

  • Lee, Young Tae;Kwon, Ik Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.107-111
    • /
    • 2022
  • In this paper, a plastic film type submersion sensor capable of measuring submersion speed was developed. This submersion sensor is designed as a capacitive type, and it is a sensor that outputs the change in capacitance between the electrode of the submersion sensor and the grounded body as a voltage through a C-V(capacitance-voltage) converter. We developed an submersion sensor in which two electrodes of different lengths are connected in parallel to measure the submersion speed accurately by minimizing the influence of noise such as contamination. When both electrodes of the submersion sensor are exposed to water, the rate of change of water level suddenly increases, so the submersion speed is measured by measuring the time to this point. Since the difference in length between the two electrodes of the submersion sensor does not change in any case, it is possible to accurately measure the submersion speed.