• Title/Summary/Keyword: Field-enhanced

Search Result 1,518, Processing Time 0.028 seconds

Nano-Optical Investigation of Enhanced Field at Gold Nanosphere-Gold Plane Junctions

  • Ahn, Sung-Hyun;Park, Won-Hwa;Kim, Zee-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2200-2202
    • /
    • 2007
  • The local field distribution around gold nanosphere-gold plane junction has been studied using the finitedifference time-domain (FDTD) electrodynamics calculation procedure. We find that both the in-plane and out-of-plane polarized excitation produce enhanced field strong enough to explain the observed SERS activities of the junctions. Comparison with a simple dipole-image dipole model shows that the enhanced field primarily originates from the multipole-image multipole interaction, which indicates that the detailed fine-structures of the nanoparticles also play a significant role in the SERS activities as well.

Enhanced field emission properties of double-walled carbon nanotubes coated with lead selenide nanoparticles (셀렌화납 코팅을 통한 이중벽 탄소나노튜브의 전계방출특성 향상)

  • Shin, Dong-Hoon;Lee, Cheol-Jin;Choi, Young-Min;Kim, Jong-Ung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.594-598
    • /
    • 2010
  • We studied on the field emission properties of double-walled carbon nanotubes (DWCNTs) coated with lead selenide (PbSe) nanoparticles. PbSe nanoparticles were uniformly attached on the surface of the DWCNTs by a simple chemical process. The PbSe-coated DWCNTs showed highly increased emission current density and enhanced emission stability over 20 h, compared with raw DWCNTs. We consider that the enhanced field emission properties of PbSe-coated DWCNTs were attributed to the increased field enhancement factor and lowered work function of the emitters.

Effect of electric field on primary dark pulses in SPADs for advanced radiation detection applications

  • Lim, Kyung Taek;Kim, Hyoungtaek;Kim, Jinhwan;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.618-625
    • /
    • 2021
  • In this paper, the single-photon avalanche diodes (SPADs) featuring three different p-well implantation doses (∅p-well) of 5.0 × 1012, 4.0 × 1012, and 3.0 × 1012 atoms/cm2 under the identical device layouts were fabricated and characterized to evaluate the effects of field enhanced mechanisms on primary dark pulses due to the maximum electric field. From the I-V curves, the breakdown voltages were found as 23.2 V, 40.5 V, and 63.1 V with decreasing ∅p-well, respectively. By measuring DCRs as a function of temperature, we found a reduction of approximately 8% in the maximum electric field lead to a nearly 72% decrease in the DCR at Vex = 5 V and T = 25 ℃. Also, the activation energy increased from 0.43 eV to 0.50 eV, as decreasing the maximum electric field. Finally, we discuss the importance of electric field engineering in reducing the field-enhanced mechanisms contributing to the DCR in SPADs and the benefits on the SPADs related to different types of radiation detection applications.

Enhancement of Field Emission Characteristics of CuO Nanowires Formed by Wet Chemical Process (습식공정으로 형성된 구리산화물 나노와이어의 전계방출특성 향상)

  • Sung Woo-Yong;Kim Wal-Jun;Lee Seung-Min;Lee Ho-Young;Park Kyung-Ho;Lee Soonil;Kim Yong-Hyup
    • Journal of Surface Science and Engineering
    • /
    • v.37 no.6
    • /
    • pp.313-318
    • /
    • 2004
  • Vertically-aligned and uniformly-distributed CuO nanowires were formed on copper-coated Si substrates by wet chemical process, immersing them in a hot alkaline solution. The effects of hydrogen plasma treatment on the field emission characteristics of CuO nanowires were investigated. It was found that hydrogen plasma treatment enhanced the field emission properties of CuO nanowires by showing a decrease in turn-on voltage, and an increase in emission current density, and stability of current-voltage curves. However, the excessive hydrogen plasma treatment made the I-V curves unstable. It was confirmed by XPS (X-ray Photoelectron Spectroscopy) analysis that hydrogen plasma treatment deoxidized CuO nanowires, thereby the work function of the nanowires decreased from 4.35 eV (CuO) to 4.1 eV (Cu). It is thought that the decrease in the work function enhanced the field emission characteristics. It is well-known that the lower the work function, the better the field emission characteristics. The results suggest that the hydrogen plasma treatment is very effective in achieving enhanced field emission properties of the CuO nanowires, and there may exist an optimal hydrogen plasma treatment condition.

The generation of Uniform High Density Plasma of Inductively Coupled Plasma Etcher Enhanced by Alternating Axial Magnetic Field (축방향 자기장의 주기적 단속을 이용한 유도결합형 플라즈마 식각장비의 고품위 플라즈마 형성)

  • 정재성;김철식
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.589-592
    • /
    • 1998
  • The performance of inductively coupled plasma (ICP) is enhanced by axial magnetic field driven by alternating current Helmholtz coils in this work. Langmuir pobe is used to characterize the plasma, and the etching performance is demonstrated with phororesist stripping process. It is shown that its density and uniformity depends on the frequency of driving current to the magnetic field.

  • PDF

Impact of vitamin-A-enhanced transgenic soybeans on above-ground non-target arthropods in Korea

  • Sung-Dug, Oh;Kihun, Ha;Soo-Yun, Park;Seong-Kon, Lee;Do won, Yun;Kijong, Lee;Sang Jae, Suh
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.875-890
    • /
    • 2021
  • In order to confirm the safety of a genetically modified organism (GMO), we assess its potential toxicity on non-target insects and spiders. In this study, the effects of GM soybean, a type of vitamin-A-enhanced transgenic soybean with tolerance to the herbicide glufosinate, were assessed under a field condition. The study compared this vitamin-A-enhanced transgenic soybean and a non-GM soybean (Gwangan) in a living modified organism (LMO) isolated field of Kyungpook National University (Gunwi) and the National Institute Agricultural Sciences (Jeonju) in the Republic of Korea in 2019 - 2020. In total, 207,760 individual insects and arachnids, representing 81 families and 13 orders, were collected during the study. From the two types of soybean fields, corresponding totals of 105,765 and 101,995 individuals from the vitamin-A-enhanced transgenic soybean and Gwangan samples areas were collected. An analysis of variance indicated no significant differences (p < 0.05). A multivariate analysis showed that the dominance and richness outcomes of plant-dwelling insects were similar. The data on insect species population densities were subjected to a principal component analysis (PCA) and an orthogonal partial least squares-discriminant analysis (OPLS-DA), which did not distinguish between the two varieties, i.e., the vitamin-A-enhanced transgenic soybean and the non-GM soybean in any cultivated field. However, the results of the PCA analysis could be divided overall into four groups based on the yearly survey areas. Therefore, there was no evidence for the different impact of vitamin A-enhanced transgenic soybean on the above-ground insects and spiders compared to non-GM soybean.

Near-field Optical Lithography for High-aspect-ratio Patterning by Using Electric Field Enhanced Postexposure Baking (전기장이 적용된 노광후굽기 공정에 의한 고종횡비 근접장 광 리소그래피)

  • Kim, Seok;Jang, Jin-Hee;Kim, Yong-Woo;Jung, Ho-Won;Hahn, Jae-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.21 no.6
    • /
    • pp.241-246
    • /
    • 2010
  • In this paper, we propose an electric field enhanced postexposure baking (EFE-PEB) method to obtain deep and high aspect ratio pattern profile in near-field recording. To describe the photoacid distribution under an external electric field during the PEB, we derived the governing equations based on Fick's second law of diffusion. From the results of the numerical calculations, it is found that the vertical movement of photoacid increases while the lateral movement is stationary as electric field varies from 0 to $8.0{\times}10^6\;V/m$. Also, it is proven that the profile of near-field recording is improved by using the EFE-PEB method with increased depth, higher aspect ratio and larger sidewall angle.

Plasmon-enhanced Infrared Spectroscopy Based on Metasurface Absorber with Vertical Nanogap

  • Hwang, Inyong;Lee, Jongwon;Jung, Joo-Yun
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.5
    • /
    • pp.275-279
    • /
    • 2018
  • In this study, we introduce a sensing platform based on a plasmonic metasurface absorber (MA) with a vertical nanogap for the ultrasensitive detection of monolayer molecules. The vertical nanogap of the MA, where the extremely high near-field is uniformly distributed and exposed to the external environment, is formed by an under-cut structure between a metallic cross nanoantenna and the mirror layer. The accessible sensing area and the enhanced near-field of the MA further enhance the sensitivity of surface-enhanced infrared absorption for the target molecule of 1-octadecanethiol. To provide strong coupling between the molecular vibrations and plasmonic resonance, the design parameters of the MA with a vertical nanogap are numerically designed.

Heterogeneously Integrated Thin-film Lithium Niobate Electro-optic Modulator Based on Slot Structure

  • Li, Xiaowei;Xu, Yin;Huang, Dongmei;Li, Feng;Zhang, Bo;Dong, Yue;Ni, Yi
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.323-331
    • /
    • 2022
  • Electro-optic modulator (EOM) takes a vital role in connecting the electric and optical fields. Here, we present a heterogeneously integrated EOM based on the lithium niobate-on-insulator (LNOI) platform. The key modulation waveguide structure is a field-enhanced slot waveguide formed by embedding silicon nanowires in a thin-film lithium niobate (LN), which is different from the previously reported LN ridge or etchless LN waveguides. Based on such slot structure, optical mode field area is reduced and enhanced electric field in the slot region can interact well with LN material with high Electro-optic (EO) coefficient. Therefore, the improvements in both aspects have positive effects on enhancing the modulation performance. From results, the corresponding EOM by adding such modulation waveguide structure achieves better performance, where the key half-wave-voltage-length product (V𝜋L) and 3 dB EO bandwidth are 1.78 V·cm and 40 GHz under the electrode gap width of only 6 ㎛, respectively. Moreover, Lower V𝜋L can also be achieved. With these characteristics, such field-enhanced waveguide structure could further promote the development of LNOI-based EOM.

Integral imaging system with enhanced depth of field using birefringence lens array

  • Park, Chan-Kyu;Lee, Sang-Shin;Hwang, Yong-Seok
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1135-1137
    • /
    • 2008
  • In this paper, it is proposed that the integral imaging technique is applied to reconstruct 3D (three dimensional) objects with enhanced depth of field, computationally and optically. Lens array using birefringence material is adopted to obtain the reconstruction. The elemental images sets are picked up through common micro lens array and utilized to present 3D reconstruction images using adopted lens array.

  • PDF