Browse > Article
http://dx.doi.org/10.5369/JSST.2018.27.5.275

Plasmon-enhanced Infrared Spectroscopy Based on Metasurface Absorber with Vertical Nanogap  

Hwang, Inyong (School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology)
Lee, Jongwon (School of Electrical and Computer Engineering, Ulsan National Institute of Science and Technology)
Jung, Joo-Yun (Nano-convergence Mechanical Systems Research Division, Korea Institute Machinery and Materials)
Publication Information
Journal of Sensor Science and Technology / v.27, no.5, 2018 , pp. 275-279 More about this Journal
Abstract
In this study, we introduce a sensing platform based on a plasmonic metasurface absorber (MA) with a vertical nanogap for the ultrasensitive detection of monolayer molecules. The vertical nanogap of the MA, where the extremely high near-field is uniformly distributed and exposed to the external environment, is formed by an under-cut structure between a metallic cross nanoantenna and the mirror layer. The accessible sensing area and the enhanced near-field of the MA further enhance the sensitivity of surface-enhanced infrared absorption for the target molecule of 1-octadecanethiol. To provide strong coupling between the molecular vibrations and plasmonic resonance, the design parameters of the MA with a vertical nanogap are numerically designed.
Keywords
Metasurfaces; plasmonics; Surface-enhanced infrared absorption; nanogap;
Citations & Related Records
연도 인용수 순위
  • Reference
1 P. R. Griffiths, J. A. De Haseth, and J. D. Winefordner, Fourier Transform Infrared Spectrometry, John Wiley & Sons, Hoboken, NJ, 2007.
2 F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. Garcia-Etxarri, and J. Aizpurua, "Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection," Phys. Rev. Lett., Vol. 101, No. 15, pp. 157403-157406, 2008.   DOI
3 E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, and X. Zhang, "Split ring resonator sensors for infrared detection of single molecular monolayers," Appl. Phys. Lett., Vol. 95, No. 4, pp. 043113-043115, 2009.   DOI
4 A. E. Cetin, D. Etezadi, and H. Altug, "Accessible near-fields by nanoantennas on nanopedestals for ultrasensitive vibrational spectroscopy," Adv. Opt. Mat., Vol. 2, No. 9, pp. 866-872, 2014.   DOI
5 C. Huck, A. Toma, F. Neubrech, M. Chirumamilla, J. Vogt, F. De Angelis, and A. Pucci, "Gold nanoantennas on a pedestal for plasmonic enhancement in the infrared," ACS Photonics, Vol. 2, No. 4, pp. 497-505, 2015.   DOI
6 C. Huck, J. Vogt, M. Sendner, D. Hengstler, F. Neubrech, and A. Pucci, "Plasmonic enhancement of infrared vibrational signals: nanoslits versus nanorods," ACS Photonics, Vol. 2, No.10, pp. 1489-1497, 2015.   DOI
7 K. Chen, T. D. Dao, S. Ishii, M. Aono, and T. Nagao, "Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy", Adv. Func. Mat., Vol. 25, No. 42, pp. 6637-6643, 2015.   DOI
8 A. Ishikawa and T. Tanaka, "Metamaterial absorbers for infrared detection of molecular self-assembled monolayers," Sci. Rep., Vol. 5, No. 12570, pp. 1-7, 2015.
9 P. A. Huidobro, M. Kraft, S. A. Maier, and J. B. Pendry, "Graphene as a tunable anisotropic or isotropic plasmonic metasurface," ACS nano, Vol. 10, No. 5, pp. 5499-5506, 2016.   DOI
10 X. Ni, A. V. Kildishev, and A. V. Shalaev, "Metasurface holograms for visible light," Nat. Commun., Vol. 4, No. 2807, pp. 1-6, 2013.
11 M. ElBadawe, T. S. Almoneef, and O. M. Ramahi, "A True Metasurface Antenna," Sci. Rep., Vol. 6, No. 19268, pp. 1- 8, 2016.
12 N. F. Yu, P. Genevet, M. Kats, F. Aieta, J. P. Tetienne, J. P. Gapasso, and Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, pp. 333-337, 2011.   DOI
13 N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, pp. 207402-207405, 2008.   DOI
14 M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, and X. Xiangang, "Design principles for infrared wide-angle perfect absorber based on plasmonic structure," Opt. Exp., Vol. 19, No. 18, pp. 17413-17420, 2011.   DOI
15 C. D. Bain, E. B. Troughton, Y. T. Tao, J. Evall, G. M. Whitesides, and R. G. Nuzzo, "Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold," J. Am. Chem. Soc., Vol. 111, No. 1, pp. 321-335, 1989.   DOI
16 Q. Feng, M. Pu, C. Hu, and X. Luo, "Engineering the dispersion of metamaterial surface for broadband infrared absorption," Opt. Lett., Vol. 37, No. 11, pp. 2133-2135, 2012.   DOI
17 A. Andryieuski and A. V. Lavrinenko, "Graphene meta-materials based tunable terahertz absorber: Effective surface conductivity approach," Opt. Exp., Vol. 21, No. 7, pp. 9144-9155, 2013.   DOI
18 L. V. Brown, K. Zhao, N. King, H. Sobhani, P. Nordlander, and N. J. Halas, "Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties," J. Am. Chem. Soc., Vol. 135, No. 9, pp. 3688-3695, 2013.   DOI
19 N. Yu and F. Capasso, "Flat optics with designer meta-surfaces," Nat. Mater., Vol. 13, pp. 139-150, 2014.   DOI
20 X. Chen, C. Wang, Y. Yao, and C. Wang, "Plasmonic vertically coupled complementary antennas for dual-mode infrared molecule sensing," ACS Nano, Vol. 11, No. 8, pp. 8034-8046, 2017.   DOI