Browse > Article

Enhancement of Field Emission Characteristics of CuO Nanowires Formed by Wet Chemical Process  

Sung Woo-Yong (서울대학교 기계항공공학부)
Kim Wal-Jun (서울대학교 기계항공공학부)
Lee Seung-Min (서울대학교 기계항공공학부)
Lee Ho-Young (서울대학교 기계항공공학부)
Park Kyung-Ho (아주대학교 분자과학기술학과)
Lee Soonil (아주대학교 분자과학기술학과)
Kim Yong-Hyup (서울대학교 기계항공공학부)
Publication Information
Journal of the Korean institute of surface engineering / v.37, no.6, 2004 , pp. 313-318 More about this Journal
Abstract
Vertically-aligned and uniformly-distributed CuO nanowires were formed on copper-coated Si substrates by wet chemical process, immersing them in a hot alkaline solution. The effects of hydrogen plasma treatment on the field emission characteristics of CuO nanowires were investigated. It was found that hydrogen plasma treatment enhanced the field emission properties of CuO nanowires by showing a decrease in turn-on voltage, and an increase in emission current density, and stability of current-voltage curves. However, the excessive hydrogen plasma treatment made the I-V curves unstable. It was confirmed by XPS (X-ray Photoelectron Spectroscopy) analysis that hydrogen plasma treatment deoxidized CuO nanowires, thereby the work function of the nanowires decreased from 4.35 eV (CuO) to 4.1 eV (Cu). It is thought that the decrease in the work function enhanced the field emission characteristics. It is well-known that the lower the work function, the better the field emission characteristics. The results suggest that the hydrogen plasma treatment is very effective in achieving enhanced field emission properties of the CuO nanowires, and there may exist an optimal hydrogen plasma treatment condition.
Keywords
Nanowire; CuO; Field emission; Hydrogen plasma treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Y D. Lee, J. A. Lee, S. I. Moon, J. H. Park, J.H. Han, J. E. Yoo, Y H. Lee, S. Nahm, B. K Ju, J. of KIEEME, 17 (2004) 541-544
2 E. Muller, T. T Song, Elsevier, NY, (1969)
3 K M. Bowkett, D. A. Smith, Elsevier, NY, (1970)
4 B. K Ju, J. H. Jung, S. J. Lee, Y. H. Lee, K H. Tchah, M. H. Oh, J. of KIEEME, (1998) 508-516
5 J. H. Jung, B. K. Ju, Y. H. Lee, K. C. Park, J.Jang, Y. H. Jung, C. J. Kim, M. H. ah, 9th IVMC, St, Petersburg, (1996) 231-234
6 B. J. Love, P. F. Packman, J. Adhesion, 40 (1993) 139   DOI   ScienceOn
7 Y. Sawada, H. Tamaru, M. Kogoma, M. Kawase, K Hashimoto, Appl. Phys., 29 (1996) 2539-2544
8 C. J. Lee, T J. Lee, S. C. Lyu, Y Zhang, H. Ruh,H. J. Lee, Appl. Phys. Lett., 81 (2002) 3648-3650   DOI   ScienceOn
9 S.-e. Chang, J.-M. Shieh, K-e. Lin, B.-T Dai, T-C. Wang, C.-F. Chen, M.-S. Feng, Y-H. Li, C.-P. Lu, J. Vac. Sci. Technol. B, 19 (2001) 767-773   DOI   ScienceOn
10 S. lijima, Nature (London), 354 (1991) 56
11 S. Yoshida, H. Ishida, J. Adhesion, 16 (1984) 217   DOI   ScienceOn
12 Hung-Hsiao Lin, Chih-Yuan Wang, Han e. Shih, Jin-Ming Chen, Chien-Te Hsieh, J. Appl. Phys. 95 (2004) 5889-5895   DOI   ScienceOn
13 W. C. Gau, T. C. Chang, Y. S. Lin, J. C. Hu, L. J. Chen, C. Y. Chang, C. L. Cheng, J. Vac. Sci. Technol. A, 18 (2000) 656-660
14 J. h. ah, J. G. Lee, e. G. Lee, Materials Chemistry and Physics, 73 (2002) 227-234
15 B. K Ju, KIDS, 2 (2001) 6-16
16 L. Dong, J. Jiao, D. W. Tuggle, J. M. Petty, Appl. Phys. Lett., 82 (2003) 1096-1098   DOI   ScienceOn