Browse > Article
http://dx.doi.org/10.1016/j.net.2020.07.006

Effect of electric field on primary dark pulses in SPADs for advanced radiation detection applications  

Lim, Kyung Taek (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology)
Kim, Hyoungtaek (Korea Atomic Energy Research Institute)
Kim, Jinhwan (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology)
Cho, Gyuseong (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
Nuclear Engineering and Technology / v.53, no.2, 2021 , pp. 618-625 More about this Journal
Abstract
In this paper, the single-photon avalanche diodes (SPADs) featuring three different p-well implantation doses (∅p-well) of 5.0 × 1012, 4.0 × 1012, and 3.0 × 1012 atoms/cm2 under the identical device layouts were fabricated and characterized to evaluate the effects of field enhanced mechanisms on primary dark pulses due to the maximum electric field. From the I-V curves, the breakdown voltages were found as 23.2 V, 40.5 V, and 63.1 V with decreasing ∅p-well, respectively. By measuring DCRs as a function of temperature, we found a reduction of approximately 8% in the maximum electric field lead to a nearly 72% decrease in the DCR at Vex = 5 V and T = 25 ℃. Also, the activation energy increased from 0.43 eV to 0.50 eV, as decreasing the maximum electric field. Finally, we discuss the importance of electric field engineering in reducing the field-enhanced mechanisms contributing to the DCR in SPADs and the benefits on the SPADs related to different types of radiation detection applications.
Keywords
SPAD; Primary dark pulse; SRH generation; Radiation detection; Field-enhanced; DCR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 G.A.M. Hurkx, H.C.d. Graaff, W.J. Kloosterman, M.P.G. Knuvers, A new analytical diode model including tunneling and avalanche breakdown, IEEE Trans. Electron. Dev. 39 (1992) 2090-2098.   DOI
2 A.N. Otte, D. Garcia, T. Nguyen, D. Purushotham, Characterization of three high efficiency and blue sensitive silicon photomultipliers, Nucl. Instrum. Methods Phys. Res. 846 (2017) 106-125.   DOI
3 I. Ostrovskiy, F. Retiere, D. Auty, J. Dalmasson, T. Didberidze, R. DeVoe, G. Gratta, L. Huth, L. James, L. Lupin-Jimenez, N. Ohmart, A. Piepke, Characterization of silicon photomultipliers for nEXO, IEEE Trans. Nucl. Sci. 62 (2015) 1825-1836.   DOI
4 M. Ghioni, A. Gulinatti, I. Rech, P. Maccagnani, S. Cova, Large-area Low-Jitter Silicon Single Photon Avalanche Diodes, SPIE, 2008.
5 P. Buzhan, A. Karakash, Y. Teverovskiy, Silicon Photomultiplier and CsI(Tl) scintillator in application to portable H*(10) dosimeter, Nucl. Instrum. Methods Phys. Res. 912 (2018) 245-247.   DOI
6 V. Chmill, E. Garutti, R. Klanner, M. Nitschke, J. Schwandt, Study of the breakdown voltage of SiPMs, Nucl. Instrum. Methods Phys. Res. 845 (2017) 56-59.   DOI
7 R. Pagano, S. Libertino, D. Corso, S. Lombardo, G. Valvo, D. Sanfilippo, G. Condorelli, M. Mazzillo, A. Piana, B. Carbone, Silicon photomultiplier: technology improvement and performance, J. Sys. Mea. 6 (2013) 124-136.
8 F. Acerbi, A. Ferri, A. Gola, M. Cazzanelli, L. Pavesi, N. Zorzi, C. Piemonte, Characterization of single-photon time resolution: from single SPAD to silicon photomultiplier, IEEE Trans. Nucl. Sci. 61 (2014) 2678-2686.   DOI
9 S. Cova, A. Lacaita, G. Ripamonti, Trapping phenomena in avalanche photo-diodes on nanosecond scale, IEEE Electron. Device Lett. 12 (1991) 685-687.   DOI
10 D. Renker, E. Lorenz, Advances in solid state photon detectors, J. Instrum. 4 (2009) P04004.   DOI
11 S. Gundacker, F. Acerbi, E. Auffray, A. Ferri, A. Gola, M.V. Nemallapudi, G. Paternoster, C. Piemonte, P. Lecoq, State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs, J. Instrum. 11 (2016) P08008. P08008.   DOI
12 C. Barker, T. Zhu, L. Rolison, S. Kiff, K. Jordan, A. Enqvist, Pulse shape analysis and discrimination for silicon-photomultipliers in helium-4 gas scintillation neutron detector, EPJ Web Conf. 170 (2018), 07002.
13 R. Pagano, G. Valvo, D. Sanfilippo, S. Libertino, D. Corso, P.G. Fallica, S. Lombardo, Silicon photomultiplier device architecture with dark current improved to the ultimate physical limit, Appl. Phys. Lett. 102 (2013) 183502.   DOI
14 S.M. Sze, K. Ng, Physics of Semiconductor Devices, third ed., John Wiley & Sons, 2007.
15 P.A. Martin, B. Streetman, K. Hess, Electric field enhanced emission from non-Coulombic traps in semiconductors, J. Appl. Phys. 52 (1981) 7409-7415.   DOI
16 K.T. Lim, H. Kim, M. Kim, Y. Kim, C. Lee, G. Cho, Photon-number resolving capability in SiPMs with electric field variation for radiation detection applications, Radiat. Phys. Chem. 155 (2019) 101-106.   DOI
17 G. Erika, Silicon photomultipliers for high energy physics detectors, J. Instrum. 6 (2011) C10003.   DOI
18 R. McIntyre, Multiplication noise in uniform avalanche diodes, IEEE Trans. Electron. Dev. 13 (1966) 164-168.   DOI
19 R. Pagano, S. Libertino, D. Corso, S. Lombardo, G. Valvo, D. Sanfilippo, G. Condorelli, M. Mazzillo, A. Piana, B. Carbone, G. Fallica, Improvement of the diffusive component of dark current in SiPM pixels, Sensordevices (2012) 2012.
20 W.J. Kindt, H.W.V. Zeijl, Modelling and fabrication of Geiger mode avalanche photodiodes, IEEE Trans. Nucl. Sci. 45 (1998) 715-719.   DOI
21 F. Acerbi, S. Gundacker, Understanding and simulating SiPMs, Nucl. Instrum. Methods Phys. Res. 926 (2019) 16-35.   DOI
22 D.J. Herbert, V. Saveliev, N. Belcari, N.D. Ascenzo, A.D. Guerra, A. Golovin, First results of scintillator readout with silicon photomultiplier, IEEE Trans. Nucl. Sci. 53 (2006) 389-394.   DOI
23 F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, C. Piemonte, Silicon photo-multipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK, Nucl. Instrum. Methods Phys. Res. 912 (2018) 309-314.   DOI
24 R. Agishev, A. Comeron, J. Bach, A. Rodriguez, M. Sicard, J. Riu, S. Royo, Lidar with SiPM: some capabilities and limitations in real environment, Optic Laser. Technol. 49 (2013) 86-90.   DOI
25 G. Ambrosi, M. Ambrosio, C. Aramo, E. Bissaldi, A. Boiano, A. Bonavolonta, C. de Lisio, L. Di Venere, E. Fiandrini, N. Giglietto, F. Giordano, M. Ionica, V. Masone, R. Paoletti, V. Postolache, D. Simone, V. Vagelli, M. Valentino, Development of a SiPM based camera for Cherenkov telescope array, Nucl. Part.Phys. Proc. 291-293 (2017) 55-58.   DOI
26 G. Collazuol, M.G. Bisogni, S. Marcatili, C. Piemonte, A. Del Guerra, Studies of silicon photomultipliers at cryogenic temperatures, Nucl. Instrum. Methods Phys. Res. 628 (2011) 389-392.   DOI
27 R.H. Haitz, Mechanisms contributing to the noise pulse rate of avalanche diodes, J. Appl. Phys. 36 (1965) 3123-3131.   DOI
28 G.A.M. Hurkx, D.B.M. Klaassen, M.P.G. Knuvers, A new recombination model for device simulation including tunneling, IEEE Trans. Electron. Dev. 39 (1992) 331-338.   DOI
29 C. Piemonte, R. Battiston, M. Boscardin, G.F.D. Betta, A.D. Guerra, N. Dinu, A. Pozza, N. Zorzi, Characterization of the first prototypes of silicon photo-multiplier fabricated at ITC-irst, IEEE Trans. Nucl. Sci. 54 (2007) 236-244.   DOI
30 M. Stipcevic, D. Wang, R. Ursin, Characterization of a commercially available large area, high detection efficiency single-photon avalanche diode, J. Lightwave Technol. 31 (2013) 3591-3596.   DOI
31 X. Li, C. Lockhart, T.K. Lewellen, R.S. Miyaoka, Study of PET detector performance with varying SiPM parameters and readout schemes, IEEE Trans. Nucl. Sci. 58 (2011) 590-596.   DOI
32 N. Serra, G. Giacomini, A. Piazza, C. Piemonte, A. Tarolli, N. Zorzi, Experimental and TCAD study of breakdown voltage temperature behavior in n+/p SiPMs, IEEE Trans. Nucl. Sci. 58 (2011) 1233-1240.   DOI
33 C. Piemonte, A. Gola, Overview on the main parameters and technology of modern Silicon Photomultipliers, Nucl. Instrum. Methods Phys. Res. 926 (2019) 2-15.   DOI
34 C.Y. Chang, S.S. Chiu, L.P. Hsu, Temperature dependence of breakdown voltage in silicon abrupt p-n junctions, IEEE Trans. Electron. Dev. 18 (1971) 391-393.   DOI
35 M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, S. Cova, Progress in silicon single-photon avalanche diodes, IEEE J. Sel. Top. Quant. Electron. 13 (2007) 852-862.   DOI
36 A.N. Otte, T. Nguyen, J. Stansbury, Locating the avalanche structure and the origin of breakdown generating charge carriers in silicon photomultipliers by using the bias dependent breakdown probability, Nucl. Instrum. Methods Phys. Res. 916 (2019) 283-289.   DOI
37 A. Gola, F. Acerbi, M. Capasso, M. Marcante, A. Mazzi, G. Paternoster, C. Piemonte, V. Regazzoni, N. Zorzi, NUV-sensitive silicon photomultiplier technologies developed at fondazione bruno kessler, Sensors 19 (2019) 308.   DOI
38 G. Zappal a, F. Acerbi, A. Ferri, A. Gola, G. Paternoster, V. Regazzoni, N. Zorzi, C. Piemonte, Study of the photo-detection efficiency of FBK High-Density silicon photomultipliers, J. Instrum. 11 (2016) P11010.   DOI
39 C. Piemonte, F. Acerbi, A. Ferri, A. Gola, G. Paternoster, V. Regazzoni, G. Zappala, N. Zorzi, Performance of NUV-HD silicon photomultiplier technology, IEEE Trans. Electron. Dev. 63 (2016) 1111-1116.   DOI