Effect of electric field on primary dark pulses in SPADs for advanced radiation detection applications |
Lim, Kyung Taek
(Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology)
Kim, Hyoungtaek (Korea Atomic Energy Research Institute) Kim, Jinhwan (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology) Cho, Gyuseong (Department of Nuclear & Quantum Engineering, Korea Advanced Institute of Science and Technology) |
1 | G.A.M. Hurkx, H.C.d. Graaff, W.J. Kloosterman, M.P.G. Knuvers, A new analytical diode model including tunneling and avalanche breakdown, IEEE Trans. Electron. Dev. 39 (1992) 2090-2098. DOI |
2 | A.N. Otte, D. Garcia, T. Nguyen, D. Purushotham, Characterization of three high efficiency and blue sensitive silicon photomultipliers, Nucl. Instrum. Methods Phys. Res. 846 (2017) 106-125. DOI |
3 | I. Ostrovskiy, F. Retiere, D. Auty, J. Dalmasson, T. Didberidze, R. DeVoe, G. Gratta, L. Huth, L. James, L. Lupin-Jimenez, N. Ohmart, A. Piepke, Characterization of silicon photomultipliers for nEXO, IEEE Trans. Nucl. Sci. 62 (2015) 1825-1836. DOI |
4 | M. Ghioni, A. Gulinatti, I. Rech, P. Maccagnani, S. Cova, Large-area Low-Jitter Silicon Single Photon Avalanche Diodes, SPIE, 2008. |
5 | P. Buzhan, A. Karakash, Y. Teverovskiy, Silicon Photomultiplier and CsI(Tl) scintillator in application to portable H*(10) dosimeter, Nucl. Instrum. Methods Phys. Res. 912 (2018) 245-247. DOI |
6 | V. Chmill, E. Garutti, R. Klanner, M. Nitschke, J. Schwandt, Study of the breakdown voltage of SiPMs, Nucl. Instrum. Methods Phys. Res. 845 (2017) 56-59. DOI |
7 | R. Pagano, S. Libertino, D. Corso, S. Lombardo, G. Valvo, D. Sanfilippo, G. Condorelli, M. Mazzillo, A. Piana, B. Carbone, Silicon photomultiplier: technology improvement and performance, J. Sys. Mea. 6 (2013) 124-136. |
8 | F. Acerbi, A. Ferri, A. Gola, M. Cazzanelli, L. Pavesi, N. Zorzi, C. Piemonte, Characterization of single-photon time resolution: from single SPAD to silicon photomultiplier, IEEE Trans. Nucl. Sci. 61 (2014) 2678-2686. DOI |
9 | S. Cova, A. Lacaita, G. Ripamonti, Trapping phenomena in avalanche photo-diodes on nanosecond scale, IEEE Electron. Device Lett. 12 (1991) 685-687. DOI |
10 | D. Renker, E. Lorenz, Advances in solid state photon detectors, J. Instrum. 4 (2009) P04004. DOI |
11 | S. Gundacker, F. Acerbi, E. Auffray, A. Ferri, A. Gola, M.V. Nemallapudi, G. Paternoster, C. Piemonte, P. Lecoq, State of the art timing in TOF-PET detectors with LuAG, GAGG and L(Y)SO scintillators of various sizes coupled to FBK-SiPMs, J. Instrum. 11 (2016) P08008. P08008. DOI |
12 | C. Barker, T. Zhu, L. Rolison, S. Kiff, K. Jordan, A. Enqvist, Pulse shape analysis and discrimination for silicon-photomultipliers in helium-4 gas scintillation neutron detector, EPJ Web Conf. 170 (2018), 07002. |
13 | R. Pagano, G. Valvo, D. Sanfilippo, S. Libertino, D. Corso, P.G. Fallica, S. Lombardo, Silicon photomultiplier device architecture with dark current improved to the ultimate physical limit, Appl. Phys. Lett. 102 (2013) 183502. DOI |
14 | S.M. Sze, K. Ng, Physics of Semiconductor Devices, third ed., John Wiley & Sons, 2007. |
15 | P.A. Martin, B. Streetman, K. Hess, Electric field enhanced emission from non-Coulombic traps in semiconductors, J. Appl. Phys. 52 (1981) 7409-7415. DOI |
16 | K.T. Lim, H. Kim, M. Kim, Y. Kim, C. Lee, G. Cho, Photon-number resolving capability in SiPMs with electric field variation for radiation detection applications, Radiat. Phys. Chem. 155 (2019) 101-106. DOI |
17 | G. Erika, Silicon photomultipliers for high energy physics detectors, J. Instrum. 6 (2011) C10003. DOI |
18 | R. McIntyre, Multiplication noise in uniform avalanche diodes, IEEE Trans. Electron. Dev. 13 (1966) 164-168. DOI |
19 | R. Pagano, S. Libertino, D. Corso, S. Lombardo, G. Valvo, D. Sanfilippo, G. Condorelli, M. Mazzillo, A. Piana, B. Carbone, G. Fallica, Improvement of the diffusive component of dark current in SiPM pixels, Sensordevices (2012) 2012. |
20 | W.J. Kindt, H.W.V. Zeijl, Modelling and fabrication of Geiger mode avalanche photodiodes, IEEE Trans. Nucl. Sci. 45 (1998) 715-719. DOI |
21 | F. Acerbi, S. Gundacker, Understanding and simulating SiPMs, Nucl. Instrum. Methods Phys. Res. 926 (2019) 16-35. DOI |
22 | D.J. Herbert, V. Saveliev, N. Belcari, N.D. Ascenzo, A.D. Guerra, A. Golovin, First results of scintillator readout with silicon photomultiplier, IEEE Trans. Nucl. Sci. 53 (2006) 389-394. DOI |
23 | F. Acerbi, G. Paternoster, A. Gola, N. Zorzi, C. Piemonte, Silicon photo-multipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK, Nucl. Instrum. Methods Phys. Res. 912 (2018) 309-314. DOI |
24 | R. Agishev, A. Comeron, J. Bach, A. Rodriguez, M. Sicard, J. Riu, S. Royo, Lidar with SiPM: some capabilities and limitations in real environment, Optic Laser. Technol. 49 (2013) 86-90. DOI |
25 | G. Ambrosi, M. Ambrosio, C. Aramo, E. Bissaldi, A. Boiano, A. Bonavolonta, C. de Lisio, L. Di Venere, E. Fiandrini, N. Giglietto, F. Giordano, M. Ionica, V. Masone, R. Paoletti, V. Postolache, D. Simone, V. Vagelli, M. Valentino, Development of a SiPM based camera for Cherenkov telescope array, Nucl. Part.Phys. Proc. 291-293 (2017) 55-58. DOI |
26 | G. Collazuol, M.G. Bisogni, S. Marcatili, C. Piemonte, A. Del Guerra, Studies of silicon photomultipliers at cryogenic temperatures, Nucl. Instrum. Methods Phys. Res. 628 (2011) 389-392. DOI |
27 | R.H. Haitz, Mechanisms contributing to the noise pulse rate of avalanche diodes, J. Appl. Phys. 36 (1965) 3123-3131. DOI |
28 | G.A.M. Hurkx, D.B.M. Klaassen, M.P.G. Knuvers, A new recombination model for device simulation including tunneling, IEEE Trans. Electron. Dev. 39 (1992) 331-338. DOI |
29 | C. Piemonte, R. Battiston, M. Boscardin, G.F.D. Betta, A.D. Guerra, N. Dinu, A. Pozza, N. Zorzi, Characterization of the first prototypes of silicon photo-multiplier fabricated at ITC-irst, IEEE Trans. Nucl. Sci. 54 (2007) 236-244. DOI |
30 | M. Stipcevic, D. Wang, R. Ursin, Characterization of a commercially available large area, high detection efficiency single-photon avalanche diode, J. Lightwave Technol. 31 (2013) 3591-3596. DOI |
31 | X. Li, C. Lockhart, T.K. Lewellen, R.S. Miyaoka, Study of PET detector performance with varying SiPM parameters and readout schemes, IEEE Trans. Nucl. Sci. 58 (2011) 590-596. DOI |
32 | N. Serra, G. Giacomini, A. Piazza, C. Piemonte, A. Tarolli, N. Zorzi, Experimental and TCAD study of breakdown voltage temperature behavior in n+/p SiPMs, IEEE Trans. Nucl. Sci. 58 (2011) 1233-1240. DOI |
33 | C. Piemonte, A. Gola, Overview on the main parameters and technology of modern Silicon Photomultipliers, Nucl. Instrum. Methods Phys. Res. 926 (2019) 2-15. DOI |
34 | C.Y. Chang, S.S. Chiu, L.P. Hsu, Temperature dependence of breakdown voltage in silicon abrupt p-n junctions, IEEE Trans. Electron. Dev. 18 (1971) 391-393. DOI |
35 | M. Ghioni, A. Gulinatti, I. Rech, F. Zappa, S. Cova, Progress in silicon single-photon avalanche diodes, IEEE J. Sel. Top. Quant. Electron. 13 (2007) 852-862. DOI |
36 | A.N. Otte, T. Nguyen, J. Stansbury, Locating the avalanche structure and the origin of breakdown generating charge carriers in silicon photomultipliers by using the bias dependent breakdown probability, Nucl. Instrum. Methods Phys. Res. 916 (2019) 283-289. DOI |
37 | A. Gola, F. Acerbi, M. Capasso, M. Marcante, A. Mazzi, G. Paternoster, C. Piemonte, V. Regazzoni, N. Zorzi, NUV-sensitive silicon photomultiplier technologies developed at fondazione bruno kessler, Sensors 19 (2019) 308. DOI |
38 | G. Zappal a, F. Acerbi, A. Ferri, A. Gola, G. Paternoster, V. Regazzoni, N. Zorzi, C. Piemonte, Study of the photo-detection efficiency of FBK High-Density silicon photomultipliers, J. Instrum. 11 (2016) P11010. DOI |
39 | C. Piemonte, F. Acerbi, A. Ferri, A. Gola, G. Paternoster, V. Regazzoni, G. Zappala, N. Zorzi, Performance of NUV-HD silicon photomultiplier technology, IEEE Trans. Electron. Dev. 63 (2016) 1111-1116. DOI |