Browse > Article
http://dx.doi.org/10.3807/KJOP.2010.21.6.241

Near-field Optical Lithography for High-aspect-ratio Patterning by Using Electric Field Enhanced Postexposure Baking  

Kim, Seok (School of Mechanical Engineering, Yonsei University)
Jang, Jin-Hee (School of Mechanical Engineering, Yonsei University)
Kim, Yong-Woo (School of Mechanical Engineering, Yonsei University)
Jung, Ho-Won (School of Mechanical Engineering, Yonsei University)
Hahn, Jae-Won (School of Mechanical Engineering, Yonsei University)
Publication Information
Korean Journal of Optics and Photonics / v.21, no.6, 2010 , pp. 241-246 More about this Journal
Abstract
In this paper, we propose an electric field enhanced postexposure baking (EFE-PEB) method to obtain deep and high aspect ratio pattern profile in near-field recording. To describe the photoacid distribution under an external electric field during the PEB, we derived the governing equations based on Fick's second law of diffusion. From the results of the numerical calculations, it is found that the vertical movement of photoacid increases while the lateral movement is stationary as electric field varies from 0 to $8.0{\times}10^6\;V/m$. Also, it is proven that the profile of near-field recording is improved by using the EFE-PEB method with increased depth, higher aspect ratio and larger sidewall angle.
Keywords
Near-field; Nanolithography; Postexposure bake; Aspect ratio; Electric field;
Citations & Related Records
연도 인용수 순위
  • Reference
1 E. Croffie, M. Cheng, A. Neureuther, R. Cirelli, F. Houlihan, J. Sweeney, P. Watson, O. Nalamasu, I. Rushkin, O. Dimov, and A. Gabor, “Overview of the STORM program application to 193nm single layer resists,” Microelectronic Engineering 53, 437-442 (2000).   DOI
2 F. H. Dill, W. P. Hornberger, P. S. Hauge, and J. M. Shaw, “Characterization of positive photoresist,” IEEE Trans. Electron Devices 22, 445-452 (1975).   DOI
3 S. J. Bukofsky, G. D. Feke, Q. Wu, R. D. Grober, P. M. Dentinger, and J. W. Taylor, “Imaging of photogenerated acid in a chemically amplified photoresist,” Appl. Phys. Lett. 73, 408-410 (1998).   DOI
4 J. B. Park, S. H. Kim, S. J. Kim, J. H. Cho, and H. K. Oh, “Acid diffusion length corresponding to post exposure bake time and temperature,” Jpn. J. Appl. Phys. 46, 28-30 (2007).   DOI
5 W. Jost, Diffusion in Solid, Liquids, Gases, 3rd ed. (Academic Press, New York, USA, 1960), pp. 46-60, 139-143.
6 T. Itani, H. Yoshino, S. Hashimoto, M. Yamana, N. Samoto, and K. Kasama, “A study of acid diffusion in chemically amplified deep ultraviolet resist,” J. Vac. Sci. Technol. B 14, 4226-4228 (1996).   DOI
7 M. Zuniga and A. R. Neureuther, “Post exposure bake characterization and parameter extraction for positive deep-UV resists through broad-area exposure experiments,” Proc. SPIE 2724, 110-118 (1996).   DOI
8 E. Richter, S. Hien, and M. Sebald, “Acid diffusion analysis in the chemically amplified CARL resist,” Microelectronic Engineering 53, 479-483 (2000).   DOI
9 T. Ito, M. Ogino, T. Yamada, Y. Inao, T. Yamaguchi, N. Mizutani, and R. Kuroda, “Fabrication of sub-100 nm patterns using near-field mask lithography with ultra-thin resist process,” J. Photopolym. Sci. Technol. 18, 435-441 (2005).   DOI
10 M. Toukhy, M. Paunescu, Z. Bogusz, and G. Pawlowski, “Chemically amplified hybrid resist platform for i-line applications,” Proc. SPIE 7273, 72730J (2009).
11 M. Cheng, E. Croffie, L. Yuan, and A. Neureuther, “Enhancement of resist resolution and sensitivity via applied electric field,” J. Vac. Sci. Technol. B 18, 3318-3322 (2000).   DOI
12 E. Lee and J. W. Hahn, “Modeling of three-dimensional photoresist profiles exposed by localized fields of high-transmission nano-apertures,” Nanotechnology 19, 275303 (2008).   DOI
13 M. Cheng, L. Yuan, E. Croffie, and A. Neureuther, “Improving resist resolution and sensitivity via electric-field enhanced postexposure baking,” J. Vac. Sci. Technol. B 20, 734-740 (2002).   DOI
14 M. Cheng, J. Poppe, and A. Neureuther, “Effects of treatment parameters in electric-field-enhanced postexposure bake,” J. Vac. Sci. Technol. B 21, 1428-1432 (2003).   DOI
15 E. Lee and J. W. Hahn, “The effect of photoresist contrast on the exposure profiles obtained with evanescent fields of nanoapertures,” J. Appl. Phys. 103, 083550 (2008).   DOI
16 E. Richter, S. Hien, and M. Sebald, “Novel diffusion analysis in advanced chemically amplified DUV resists using photometric methods,” J. Photopolym. Sci. Technol. 12, 695-710 (1999).   DOI
17 C. T. Lee, R. A. Lawson, and C. L. Henderson, “Understanding the effects of photoacid distribution homogeneity and diffusivity on critical dimension control and line edge roughness in chemically amplified resists,” J. Vac. Sci. Technol. B 26, 2276-2280 (2008).   DOI
18 C. A. Mark, “The new, new limits of optical lithography,” Proc. SPIE 5374, 1-8 (2004).   DOI
19 A. A. Milner, K. Zhang, and Y. Prior, “Floating tip nanolithography,” Nano Lett. 8, 2017-2022 (2008).   DOI
20 S. Sun and G. J. Leggett, “Matching the resolution of electron beam lithography by scanning near-field photolithography,” Nano Lett. 4, 1381-1384 (2004).   DOI
21 F. Huo, Z. Zheng, G. Zheng, L. R. Giam, H. Zhang, and C. A. Mirkin, “Polymer pen lithography,” Science 321, 1658-1660 (2008).   DOI   ScienceOn
22 Y. Wang, X. Liang, Y. Liang, and S. Y. Chou, “Sub-10-nm wide trench, line, and hole fabrication using pressed self-perfection,” Nano Lett. 8, 1986-1990 (2008).   DOI
23 M. M. Alkaisi, R. J. Blaikie, S. J. McNab, R. Cheung, and D. R. S. Cumming, “Sub-diffraction-limited patterning using evanescent near-field optical lithography,” Appl. Phys. Lett. 75, 3560-3562 (1999).   DOI
24 G. J. Leggett, “Scanning near-field photolithography-surface photochemistry with nanoscale spatial resolution,” Chem. Soc. Rev. 35, 1150-1161 (2006).   DOI
25 W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733-737 (2008).   DOI
26 Y. Kim, S. Kim, H. Jung, E. Lee, and J. W. Hahn, “Plasmonic nano lithography with a high scan speed contact probe,” Opt. Express 17, 19476-19485 (2009).   DOI
27 M. Naya, I. Tsuruma, T. Tani, and A. Mukai, “Near-field optical photolithography for high-aspect-ratio patterning using bilayer resist,” Appl. Phys. Lett. 86, 201113 (2005).   DOI