• Title/Summary/Keyword: Field effect transistor (FET)

Search Result 237, Processing Time 0.024 seconds

Surface potential mapping using a functional AFEM cantilever (기능성 원자간력 현미경 캔틸레버를 이용한 표면 전위 측정)

  • Suh Moon Suhk;Lee Churl Seung;Lee Kyoung Il;Shin Jin-Koog
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.53-55
    • /
    • 2005
  • The surface potential variations are measured, according to the enhanced measuring speed and voltage sensitivity, using an active device, such as a field effect transistor $(FET)^{1-3}$. In this study, the surface potential was mapped in the patterned $SiO_2$ medium at room temperature. An improved FET-tip cantilever, which has a source, a drain, and an n- channel, was used in this study. The potential images were analyzed both in the contact mode and the non-contact mode, using only a pre-amplifier system instead of a lock-in the amplifier.

  • PDF

화학기상증착 방법으로 성장된 $SnO_2$ 나노선의 특성 분석: 성장 온도와 산소유량에 따른 구조와 전기특성

  • Kim, Yun-Cheol;Ha, Jeong-Suk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.71-71
    • /
    • 2010
  • 최근 나노선의 우수한 전기적, 광학적 특성을 다양한 종류의 전자소자, 광소자, 그리고 센서에 응용하는 연구가 활발히 진행되고 있다. 그 중 $SnO_2$ 나노선은 n-type의 전기특성과 우수한 광 특성을 보이며, 전자소자, 광소자 뿐 아니라 다양한 종류의 가스 센서 제작에 널리 사용되고 있다. 본 연구에서는 화학기상증착법 (Chemical Vapor Deposition)으로 $SnO_2$ 나노선을 성장하여 전계방출효과 트랜지스터 (field effect transistor: FET)를 제작하여 전기적 특성을 측정하였다. 나노선의 성장 조건 (온도와 산소 유량) 에 따른 나노선의 구조, 화학조성, 전기적 특성을 체계적으로 조사하였다. 산소의 유량이 낮을 때는 온도에 따라 나노선의 크기와 전기 특성에 변화가 없었으나, 산소의 유량을 높이면 온도에 따라 나노선의 두께와 전기적 특성이 크게 변화하였다. 본 연구에서는 특히, FET 구조에서 on/off current ratio 가 $10^5$ 이상으로 매우 높은 나노선 제작이 가능하였다. 전기적 특성과 나노선의 결정구조, 화학적 조성을 함께 비교하여 성장 메커니즘을 이해하고자 한다.

  • PDF

The Fabrication of FET-Type Reference Electrode Using Ion-Blocking Membrane of Polymer Double Layer (고분자 이중층의 이온 방해막을 이용한 FET형 기준전극 제작)

  • Lee, Young-Chul;Kim, Young-Jin;Jeong, Hun;Kwon, Dae-Hyuk;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.2
    • /
    • pp.106-112
    • /
    • 2000
  • A FET-type reference electrode(REFET) is an effective method to eliminate typical problems with ISFET(ion sensitive field-effect transistor) such as drift, temperature, light-dependence and miniaturization of reference electrode. However, it is difficult to make the highly reliable REFET with excellent long-term stability and reproducibility. In this paper, an ion-blocking membrane was applied to the REFET for the PET-type electrolyte sensors(pH, pNa-ISFET). The fabricated REFET indicated the stable sensitivity (55.4 mV/pH, 53.5 mV/decade) and good linearity in the pH and pNa measurement. In the measurement, ISFET/Pt/REFET configuration showed excellent stability and reproducibility.

  • PDF

Rigorous Design of 22-nm Node 4-Terminal SOI FinFETs for Reliable Low Standby Power Operation with Semi-empirical Parameters

  • Cho, Seong-Jae;O'uchi, Shinichi;Endo, Kazuhiko;Kim, Sang-Wan;Son, Young-Hwan;Kang, In-Man;Masahara, Meishoku;Harris, James S.Jr;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.265-275
    • /
    • 2010
  • In this work, reliable methodology for device design is presented. Based on this method, the underlap length has been optimized for minimizing the gateinduced drain leakage (GIDL) in a 22-nm node 4-terminal (4-T) silicon-on-insulator (SOI) fin-shaped field effect transistor (FinFET) by TCAD simulation. In order to examine the effects of underlap length on GIDL more realistically, doping profile of the source and drain (S/D) junctions, carrier lifetimes, and the parameters for a band-to-band tunneling (BTBT) model have been experimentally extracted from the devices of 90-nm channel length as well as pnjunction test element groups (TEGs). It was confirmed that the underlap length should be near 15 nm to suppress GIDL effectively for reliable low standby power (LSTP) operation.

Preparation of Field Effect Transistor with $(Bi,La)Ti_3O_{12}$ Ferroelectric Thin Film Gate ($(Bi,La)Ti_3O_{12}$ 강유전체 박막 게이트를 갖는 전계효과 트랜지스터 소자의 제작)

  • Suh Kang Mo;Park Ji Ho;Gong Su Cheol;Chang Ho Jung;Chang Young Chul;Shim Sun Il;Kim Yong Tae
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2003.11a
    • /
    • pp.221-225
    • /
    • 2003
  • The MFIS-FET(Field Effect Transistor) devices using $BLT/Y_2O_3$ buffer layer on p-Si(100) substrates were fabricated by the Sol-Gel method and conventional memory processes. The crystal structure, morphologies and electrical properties of prepared devices were investigated by using various measuring techniques. From the C-V(capacitance-voltage) data at 5V, the memory window voltage of the $Pt/BLT/Y_2O_3/si$ structure decreased from 1.4V to 0.6V with increasing the annealing temperature from $700^{\circ}C\;to\;750^{\circ}C$. The drain current (Ic) as a function of gate voltages $(V_G)$ for the $MFIS(Pt/BLT/Y_2O_3/Si(100))-FET$ devices at gate voltages $(V_G)$ of 3V, 4V and 5V, the memory window voltages increased from 0.3V to 0.8V as $V_G$ increased from 3V to 5V.

  • PDF

Fabrication of Lipid Sensor Utilizing Photosensitive Water Soluble Polymer (감광성 수용성 고분자를 이용한 Lipid 센서의 제조)

  • Park, Lee-Soon;Kim, Gi-Hyeon;Sohn, Byung-Ki
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.35-40
    • /
    • 1993
  • A FET(field effect transistor) type lipid sensor was fabricated uy immobilizing lipase enzyme on the gate of pH-ISFET($SiO_{2}/Si_{3}N_{4}$). A water soluble polymer, polyvinyl alcohol(PVA) was modified with 1-methyl-4-(formyl-styryl) pyridinium methosulfate(SbQ) to give a photosensitive membrane(PVA-SbQ) in which lipase was immobilized. The optimum photolithographic conditions were ; spin coating speed $5,000{\sim}6,000$ rpm. UV exposure time $20{\sim}30$ seconds, developing time in water $30{\sim}40$ seconds, and vacuum drying time 45 min. at room temperature with the suspension containing PVA-SbQ aqueous solution(SbQ 1mol%, 10 wt %) $200{\mu}L$, bovine serum albumin (BSA) 7.5 mg, and lipase 10 mg. The lipid sensor showed good linear calibration curve in the range of $10{\sim}100$ mM triacetin as a lipid sample.

  • PDF

Effects of Annealing Gas and Pressure Conditions on the Electrical Characteristics of Tunneling FET (가스 및 압력조건에 따른 Annealing이 Tunneling FET의 전기적 특성에 미치는 영향)

  • Song, Hyun-Dong;Song, Hyeong-Sub;Babu, Eadi Sunil;Choi, Hyun-Woong;Lee, Hi-Deok
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.704-709
    • /
    • 2019
  • In this paper, the electrical characteristics of tunneling field effect transistor(TFET) was studied for different annealing conditions. The TFET samples annealed using hydrogen forming gas(4 %) and Deuterium($D_2$) forming gas(4 %). All the measurements were conducted in noise shielded environment. The results show that subthreshold slope(SS) decreased by 33 mV/dec after annealing process compared to before annealing. Under various temperature range, the noise is improved by average of 31.2 % for 10 atm Deuterium gas at $V_G=3V$ condition. It is also noticed that, post metal annealing with $D_2$ gas reduces the noise by average of 30.7 % at $I_D=100nA$ condition.

Triple Material Surrounding Gate (TMSG) Nanoscale Tunnel FET-Analytical Modeling and Simulation

  • Vanitha, P.;Balamurugan, N.B.;Priya, G. Lakshmi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.6
    • /
    • pp.585-593
    • /
    • 2015
  • In the nanoscale regime, many multigate devices are explored to reduce their size further and to enhance their performance. In this paper, design of a novel device called, Triple Material Surrounding Gate Tunnel Field effect transistor (TMSGTFET) has been developed and proposed. The advantages of surrounding gate and tunnel FET are combined to form a new structure. The gate material surrounding the device is replaced by three gate materials of different work functions in order to curb the short channel effects. A 2-D analytical modeling of the surface potential, lateral electric field, vertical electric field and drain current of the device is done, and the results are discussed. A step up potential profile is obtained which screens the drain potential, thus reducing the drain control over the channel. This results in appreciable diminishing of short channel effects and hot carrier effects. The proposed model also shows improved ON current. The excellent device characteristics predicted by the model are validated using TCAD simulation, thus ensuring the accuracy of our model.

The novel encapsulation method for organic thin-film transistor (새로운 방식의 유기박막트랜지스터 패시베이션 기술)

  • Lee, Jung-Hun;Kim, Seong-Hyun;Kim, Ki-Hyun;Lim, Sang-Chul;Cho, Eu-Na-Ri;Jang, Jin;Zyung, Tae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05a
    • /
    • pp.177-180
    • /
    • 2004
  • In this study, we report a novel encapsulation method for longevity of an organic thin-film transistor (OTFT) using pentaceneby means of an adhesive multiplayerincluded Al film. For encapsulation of OTFTs, the Al film adhered onto the OTFT in a dry nitrogen atmosphere using a proper adhesive. A lifetime, which was defined as the time necessary to reduce mobility to 2% of initial mobility value, was observed from the typical $I_{D-VD}$ characteristics of the field-effect transistor (FET). The initial field effect mobility ${\mu}$ was measured to be $2.0{\times}10^{-1}\;cm^2/Vs$. The characterization was maintained for long times in air. No substantial degeneration occurred. The performance and the stability are probably due to the encapsulation effect.

  • PDF

MoS2 Field Effect Transistor 저전력 고성능 소자 구현을 위한 게이트 구조 설계 최적화

  • Park, Il-Hu;Jang, Ho-Gyun;Kim, Cheol-Min;Lee, Guk-Jin;Kim, Gyu-Tae
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.292-294
    • /
    • 2016
  • 이황화몰리브덴을 활용한 전계효과트랜지스터(Field Effect Transistor)는 채널 물질의 우수한 특성으로 차세대 저전력 고성능 스위치와 광전소자로 주목받고있다. Underlap 게이트 구조에서 게이트 길이(L_G), 절연체 두께(T), 절연체 상대유전율(${\varepsilon}_r$)에 따라 변화하는 소자특성을 분석하여 저전력 고성능 $MoS_2$ 전계효과트랜지스터를 위한 게이트 구조 최적화방법을 모색하였다. EDISON simulator 중 Tight-binding NEGF 기반 TMD FET 소자 성능 및 특성 해석용 S/W를 활용하여 게이트 구조에 따른 게이트 전압 - 드레인 전류 상관관계(transfer characteristic)를 얻고, Y-function method를 이용하여 채널 유효전하이동도(Effective Mobility), Sub-threshold Swing, on/off 전류비(on/off current ratio)를 추출하여 비교 분석하였다. 시뮬레이션으로 추출한 소자의 최대 채널 유효전하이동도는 $37cm^2V^{-1}s^{-1}$, on/off 전류비는 $10^4{\sim}10^5$, Sub-threshold Swing은 ~38mV/dec 수준을 보였다.

  • PDF