• Title/Summary/Keyword: Field effect mobility

Search Result 518, Processing Time 0.033 seconds

Staggered and Inverted Staggered Type Organic-Inorganic Hybrid TFTs with ZnO Channel Layer Deposited by Atomic Layer Deposition

  • Gong, Su-Cheol;Ryu, Sang-Ouk;Bang, Seok-Hwan;Jung, Woo-Ho;Jeon, Hyeong-Tag;Kim, Hyun-Chul;Choi, Young-Jun;Park, Hyung-Ho;Chang, Ho-Jung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.16 no.4
    • /
    • pp.17-22
    • /
    • 2009
  • Two different organic-inorganic hybrid thin film transistors (OITFTs) with the structures of glass/ITO/ZnO/PMMA/Al (staggered structure) and glass/ITO/PMMA/ZnO/Al (inverted staggered structure), were fabricated and their electrical and structural properties were compared. The ZnO thin films used as active channel layers were deposited by the atomic layer deposition (ALD) method at a temperature of $100^{\circ}C$. To investigate the effect of the substrates on their properties, the ZnO films were deposited on bare glass, PMMA/glass and ITO/glass substrates and their crystal properties and surface morphologies were analyzed. The structural properties of the ZnO films varied with the substrate conditions. The ZnO film deposited on the ITO/glass substrate showed better crystallinity and morphologies, such as a higher preferred c-axis orientation, lower FWHM value and larger particle size compared with the one deposited on the PMMA/glass substrate. The field effect mobility ($\mu$), threshold voltage ($V_T$) and $I_{on/off}$ switching ratio for the OITFT with the staggered structure were about $0.61\;cm^2/V{\cdot}s$, 5.5 V and $10^2$, whereas those of the OITFT with the inverted staggered structure were found to be $0.31\;cm^2/V{\cdot}s$, 6.8 V and 10, respectively. The improved electrical properties for the staggered OITFTs may originate from the improved crystal properties and larger particle size of the ZnO active layer.

  • PDF

An Analytical DC Model for HEMT's (헴트 소자의 해석적 직류 모델)

  • Kim, Young-Min
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.6
    • /
    • pp.38-47
    • /
    • 1989
  • A purely analytical model for HEMT's based on a two dimensional charge control simul-ation[4] is proposed. In this model proper treatment of diffusion effect of electron transport along a 2-DEG (two dimensional electron gas) channel is perfoemed. This diffusion effect is shown to effectively increase the bulk mibility and threshold voltage of the I-V curves compared to the existing models. The channel thickness and gate capacitance are expressed as functions of gate voltages covering subthreshold characteristics of HEMT's analytically. By introducing the finite channel opening and an effiective channel-length modulation, the solpe of the saturation region of the I-V curves ws modeled. The smooth transition of the I-V curves at linear-to-saturation regions of the I-V curves was possible using the continuous Troffimenkoff-type of field dependent mobility. Furthermore, a correction factor f was introduced to account for the finite transition section forming between a GCA and a saturated section. This factor removes large discrepancies in the saturation region of the I-V curve predicted by existing l-dimensional models.

  • PDF

Growth and Optoelectric Characterization of $ZnGa_{2}Se_{4}$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $ZnGa_{2}Se_{4}$ 단결정 박막 성장과 광전기적 특성)

  • Park, Chang-Sun;Hong, Kwang-Joon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.163-166
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $ZnGa_{2}Se_{4}$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $ZnGa_{2}Se_{4}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $ZnGa_{2}Se_{4}$ single crystal trun films measured from Hall effect by van der Pauw method are $9.63{\times}10^{17}cm^{-3}$, $296cm^{2}/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c axis of the $ZnGa_{2}Se_{4}$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$ So and the crystal field splitting $\Delta$Cr were 251.9 meV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on $ZnGa_{2}Se_{4}$ single crystal thin film, we observed free excition (Ex) existing only high quality crystal and neutral bound exiciton $(A^{0},X)$ having very strong peak intensity. Then, the full-width-at -half-maximum(FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.

  • PDF

Growth and Optoelectric Characterization of $CdGa_{2}Se_{4}$ Single Crystal Thin Films by Hot Wall Epitaxy (Hot Wall Epitaxy (HWE)에 의한 $CdGa_{2}Se_{4}$ 단결정 박막 성장과 광전기적 특성)

  • Hong, Kwang-Joon;Park, Chang-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.167-170
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the $CdGa_{2}Se_{4}$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, $CdGa_{2}Se_{4}$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were $630^{\circ}C$ and $420^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CdGa_{2}Se_{4}$ single crystal thin films measured from Hall effect by van der Pauw method are $8.27{\times}10^{17}cm^{-3},345cm^{2}/V{\cdot}s$ at 293 K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the $CuInSe_{2}$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$ So and the crystal field splitting $\Delta$Cr were 106.5 meV and 418.9 meV at 10 K, respectively. From the photoluminescence measurement on $CdGa_{2}Se_{4}$ single crystal thin film, we observed free excition (Ex) existing only high Quality crystal and neutral bound exiciton $(D^{0},X)$ having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral donor bound excition were 8 meV and 13.7 meV, respectivity. By Haynes rule, an activation energy of impurity was 137 meV.

  • PDF

P-Type Doping of Graphene Films by Hybridization with Nickel Nanoparticles

  • Lee, Su Il;Song, Wooseok;Kim, Yooseok;song, Inkyung;Park, Sangeun;Cha, Myung-Jun;Jung, Dae Sung;Jung, Min Wook;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.208-208
    • /
    • 2013
  • Graphene has emerged as a fascinating material for next-generation nanoelectronics due to its outstanding electronic properties. In particular, graphene-based field effect transistors (GFETs) have been a promising research subject due to their superior response times, which are due to extremely high electron mobility at room temperature. The biggest challenges in GFET applications are control of carrier concentration and opening the bandgap of graphene. To overcome these problems, three approaches to doping graphene have been developed. Here we demonstrate the decoration of Ni nanoparticles (NPs) on graphene films by simple annealing for p-type doping of graphene. Ni NPs/graphene films were fabricated by coating a $NiCl2{\cdot}6H2O$ solution onto graphene followedby annealing. Scanning electron microscopy and atomic force microscopy revealed that high-density, uniformly sized Ni NPs were formed on the graphene films and the density of the Ni NPs increased gradually with increasing $NiCl2{\cdot}6H2O$ concentration. The formation of Ni NPs on graphene films was explained by heat-driven dechlorination and subsequent particlization, as investigated by X-ray photoelectron spectroscopy. The doping effect of Ni NPs onto graphene films was verified by Raman spectroscopy and electrical transport measurements.

  • PDF

Wireless Communication at 310 GHz using GaAs High-Electron-Mobility Transistors for Detection

  • Blin, Stephane;Tohme, Lucie;Coquillat, Dominique;Horiguchi, Shogo;Minamikata, Yusuke;Hisatake, Shintaro;Nouvel, Philippe;Cohen, Thomas;Penarier, Annick;Cano, Fabrice;Varani, Luca;Knap, Wojciech;Nagatsuma, Tadao
    • Journal of Communications and Networks
    • /
    • v.15 no.6
    • /
    • pp.559-568
    • /
    • 2013
  • We report on the first error-free terahertz (THz) wireless communication at 0.310 THz for data rates up to 8.2 Gbps using a 18-GHz-bandwidth GaAs/AlGaAs field-effect transistor as a detector. This result demonstrates that low-cost commercially-available plasma-wave transistors whose cut-off frequency is far below THz frequencies can be employed in THz communication. Wireless communication over 50 cm is presented at 1.4 Gbps using a uni-travelling-carrier photodiode as a source. Transistor integration is detailed, as it is essential to avoid any deleterious signals that would prevent successful communication. We observed an improvement of the bit error rate with increasing input THz power, followed by a degradation at high input power. Such a degradation appears at lower powers if the photodiode bias is smaller. Higher-data-rate communication is demonstrated using a frequency-multiplied source thanks to higher output power. Bit-error-rate measurements at data rates up to 10 Gbps are performed for different input THz powers. As expected, bit error rates degrade as data rate increases. However, degraded communication is observed at some specific data rates. This effect is probably due to deleterious cavity effects and/or impedance mismatches. Using such a system, realtime uncompressed high-definition video signal is successfully and robustly transmitted.

Growth and Optoelectric Characterization of $ZnGa_{2}Se_{4}$ Sing1e Crystal Thin Films (Hot Wall Epitaxy (HWE)에 의한$ZnGa_{2}Se_{4}$단결정 박막 성장과 광전기적 특성)

  • 박창선;홍광준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.163-166
    • /
    • 2001
  • The stochiometric mix of evaporating materials for the ZnGa$_2$Se$_4$ single crystal thin films was prepared from horizontal furnace. To obtain the single crystal thin films, ZnGa$_2$Se$_4$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 61$0^{\circ}C$ and 45$0^{\circ}C$, respectively. The crystalline structure of single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of ZnGa$_2$Se$_4$ single crystal thin films measured from Hall effect by van der Pauw method are 9.63x10$^{17}$ cm$^{-3}$ , 296 $\textrm{cm}^2$/V.s at 293 K, respectively, From the photocurrent spectrum by illumination of perpendicular light on the c-axis of the ZnGa$_2$Se$_4$ single crystal thin film, we have found that the values of spin orbit splitting $\Delta$So and the crystal field splitting $\Delta$Cr were 251.9 MeV and 183.2 meV at 10 K, respectively. From the photoluminescence measurement on ZnGa$_2$Se$_4$ single crystal thin film, we observed free excition (E$_{x}$) existing only high quality crystal and neutral bound excition (A$^{0}$ ,X) having very strong peak intensity. Then, the full-width-at-half-maximum(FWHM) and binding energy of neutral acceptor bound excition were 11 meV and 24.4 meV, respectivity. By Haynes rule, an activation energy of impurity was 122 meV.on energy of impurity was 122 meV.

  • PDF

Temperature dependence of photocurrent spectra for $AgGaSe_2$ single crystal thin film grown by hot wall epitaxy (Hot Wall Epitaxy(HWE) 법에 의해 성장된 $AgGaSe_2$ 단결정 박막의 광전류 온도 의존성)

  • Hong, Kwang-Joon;Bang, Jin-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.179-180
    • /
    • 2007
  • Single crystal $AgGaSe_2$ layers were grown on thoroughly etched semi-insulating GaAs(100) substrate at $420^{\circ}C$ with hot wall epitaxy (HWE) system by evaporating $AgGaSe_2$ source at $630^{\circ}C$. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of single crystal $AgGaSe_2$ thin films measured with Hall effect by van der Pauw method are $4.05{\times}\;10^{16}/cm^3$, $139\;cm^2/V{\cdot}s$ at 293 K. respectively. The temperature dependence of the energy band gap of the $AgGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g(T)=1.9501\;eV\;-\;(8.79{\times}10^{-4}\;eV/K)T^2$/(T + 250 K). The crystal field and the spin-orbit splitting energies for the valence band of the $AgGaSe_2$ have been estimated to be 0.3132 eV and 0.3725 eV at 10 K, respectively, by means of the phcitocurrent spectra and the Hopfield quasicubic model. These results indicate that the splitting of the ${\Delta}So$ definitely exists in the $\Gamma_5$ states of the valence band of the $AgGaSe_2$. The three photocurrent peaks observed at 10 K are ascribed to the $A_1$-, $B_1$-, and $C_1$-exciton peaks for n = 1.

  • PDF

Low-Temperature Growth of N-doped SiO2 Layer Using Inductively-Coupled Plasma Oxidation and Its Effect on the Characteristics of Thin Film Transistors (플라즈마 산화방법을 이용한 질소가 첨가된 실리콘 산화막의 제조와 산화막 내의 질소가 박막트랜지스터의 특성에 미치는 영향)

  • Kim, Bo-Hyun;Lee, Seung-Ryul;Ahn, Kyung-Min;Kang, Seung-Mo;Yang, Yong-Ho;Ahn, Byung-Tae
    • Korean Journal of Materials Research
    • /
    • v.19 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • Silicon dioxide as gate dielectrics was grown at $400^{\circ}C$ on a polycrystalline Si substrate by inductively coupled plasma oxidation using a mixture of $O_2$ and $N_2O$ to improve the performance of polycrystalline Si thin film transistors. In conventional high-temperature $N_2O$ annealing, nitrogen can be supplied to the $Si/SiO_2$ interface because a NO molecule can diffuse through the oxide. However, it was found that nitrogen cannot be supplied to the Si/$SiO_2$ interface by plasma oxidation as the $N_2O$ molecule is broken in the plasma and because a dense Si-N bond is formed at the $SiO_2$ surface, preventing further diffusion of nitrogen into the oxide. Nitrogen was added to the $Si/SiO_2$ interface by the plasma oxidation of mixtures of $O_2/N_2O$ gas, leading to an enhancement of the field effect mobility of polycrystalline Si TFTs due to the reduction in the number of trap densities at the interface and at the Si grain boundaries due to nitrogen passivation.

Effect of Annealing Temperatures on the Properties of Zn2SnO4 Thin Film (열처리 온도에 따른 Zn2SnO4 박막의 특성)

  • Shin, Johngeon;Cho, Shinho
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.74-78
    • /
    • 2019
  • $Zn_2SnO_4$ thin films were deposited on quartzs substrates by using radio-frequency magnetron sputtering system. Thermal treatments at various temperatures were performed to evaluate the effect of annealing temperatures on the properties of $Zn_2SnO_4$ thin films. Surface morphologies were examined by using field emission-scanning electron microscopy and showed that sizes of grains were slightly increased and grain boundaries were clear with increasing annealing temperatures. The deposited $Zn_2SnO_4$ thin films on quartzs substrates were amorphous structures and no distinguishable crystallographic changes were observed with variations of annealing temperatures. The optical transmittance was improved with increasing annealing temperatures and was over 90% in the wavelength region between 350 and 1100 nm at the annealing temperature of $600^{\circ}C$. The optical energy bandgaps, which derived from the absorbance of $Zn_2SnO_4$ thin films, were increased from 3.34 eV to 3.43 eV at the annealing temperatures of $450^{\circ}C$ and $600^{\circ}C$, respectively. As the annealing temperature was increased, the electron concentrations were decreased. The electron mobility was decreased and resistivity was increased with increasing annealing temperatures with exception of $450^{\circ}C$. These results indicate that heat treatments at higher annealing temperatures improve the optical and electrical properties of rf-sputtered $Zn_2SnO_4$ thin films.