Staggered and Inverted Staggered Type Organic-Inorganic Hybrid TFTs with ZnO Channel Layer Deposited by Atomic Layer Deposition

  • Gong, Su-Cheol (Department of Electronics Engineering, Dankook University) ;
  • Ryu, Sang-Ouk (Department of Electronics Engineering, Dankook University) ;
  • Bang, Seok-Hwan (Division of Materials Science and Engineering, Hanyang University) ;
  • Jung, Woo-Ho (Division of Materials Science and Engineering, Hanyang University) ;
  • Jeon, Hyeong-Tag (Division of Materials Science and Engineering, Hanyang University) ;
  • Kim, Hyun-Chul (Department of Material Science and Engineering, Yonsei University) ;
  • Choi, Young-Jun (Department of Material Science and Engineering, Yonsei University) ;
  • Park, Hyung-Ho (Department of Material Science and Engineering, Yonsei University) ;
  • Chang, Ho-Jung (Department of Electronics Engineering, Dankook University)
  • Published : 2009.12.30

Abstract

Two different organic-inorganic hybrid thin film transistors (OITFTs) with the structures of glass/ITO/ZnO/PMMA/Al (staggered structure) and glass/ITO/PMMA/ZnO/Al (inverted staggered structure), were fabricated and their electrical and structural properties were compared. The ZnO thin films used as active channel layers were deposited by the atomic layer deposition (ALD) method at a temperature of $100^{\circ}C$. To investigate the effect of the substrates on their properties, the ZnO films were deposited on bare glass, PMMA/glass and ITO/glass substrates and their crystal properties and surface morphologies were analyzed. The structural properties of the ZnO films varied with the substrate conditions. The ZnO film deposited on the ITO/glass substrate showed better crystallinity and morphologies, such as a higher preferred c-axis orientation, lower FWHM value and larger particle size compared with the one deposited on the PMMA/glass substrate. The field effect mobility ($\mu$), threshold voltage ($V_T$) and $I_{on/off}$ switching ratio for the OITFT with the staggered structure were about $0.61\;cm^2/V{\cdot}s$, 5.5 V and $10^2$, whereas those of the OITFT with the inverted staggered structure were found to be $0.31\;cm^2/V{\cdot}s$, 6.8 V and 10, respectively. The improved electrical properties for the staggered OITFTs may originate from the improved crystal properties and larger particle size of the ZnO active layer.

Keywords

References

  1. K. C. Dickey, J. E. Anthony, and Y. L. Loo, "Improving Organic Thin-Film Transistor Performance through Solvent-Vapor Annealing of Solution-Processable Triethylsilylethynyl Anthradithiophene", Adv. Mat., 18, 1721-1726, (2006) https://doi.org/10.1002/adma.200600188
  2. Y. S. Park, K. H. Kim, H. J. Kim, I. C. Chung, and B. Hong, "Characterization of pentacene based organic thin film transistor using conductive carbon electrode", Phys. Stat. Sol., (c)5, 10, 3327-3331, (2008) https://doi.org/10.1002/pssc.200778866
  3. D. Park, J. Heo, J. Kwon, and I. Chung, "Electrical Characterization of Pentacene-Based Organic Thin-Film Transistors", J. Kor. Phys. Soc., 54, 2, 687-691, (2009) https://doi.org/10.3938/jkps.54.687
  4. Elvira M. C. Fortunato, Pedro M. C. Barquinha, Ana C. M. B. G. Pimentel, Alexandra M. F. Goncalves, Antonio J. S. Marqyes, Luis M. N. Pereira, and Rodrifo F. P. Martins," Fully Transparent ZnO Thin-Film Transistor Prodeced at Room Temperature", Adv. Mater., 17, 5, 590-593, (2005) https://doi.org/10.1002/adma.200400368
  5. P. F. Carcia, R. S. McLean, M. H. Reilly, and G. Nunes, Jr.,"Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering", Appl. Phys. Lett. 82 1117-1119, (2003). https://doi.org/10.1063/1.1553997
  6. R. Navamathavan, C. K. Choi, and S. J. Park, "Electrical properties of ZnO-based bottom-gate thin film transistors fabricated by using radio frequency magnetron sputtering" J. Alloys and Compaunds, 475, 889-892, (2009) https://doi.org/10.1016/j.jallcom.2008.08.039
  7. J. H. Chung, J. Y. Lee, N. W. Jang, and J. H Kim, "Effect of thickness of ZnO active layer on ZnO-TFT's characteristics", Thin Solid Films, 516, 5597-5601, (2008) https://doi.org/10.1016/j.tsf.2007.07.107
  8. R. L. Hoffman, B. J. Norris, and J. F. Wager, "ZnO-Based Transparent Thin-Film Transistors", Appl. Phys. Lett. 82, 733-735, (2003). https://doi.org/10.1063/1.1542677
  9. S. Kwon, S. Bang, S. Lee, S. Jeon, W. Jeong, H. Kim, S. C. Gong, H. J. Chung, H. Park, and H. Jeon, Characteristics of the ZnO thin film transistor by atomic layer deposition at various temperatures", Semicond. Sci. Technol., 24 035015, (2009) https://doi.org/10.1088/0268-1242/24/3/035015
  10. R. Chen, H. Kim, P. C. McIntyre, and S. F. Bent, " Investigation of Self-Assembled Monolayer Resists for Hafnium Dioxide Atomic Layer Deposition", Chem. Mater., 17, 536-544, (2005) https://doi.org/10.1021/cm0486666
  11. S. Y. Jeon, S. H. Bang,, S. J. Lee, S. M. Kwon, W. H. Jeong, H. T. Jeon, H. J. Chang, and H. H. Park, "Characteristics of Zinc-Oxide-Sulfide-Mixed Films Deposited by Using Atomic Layer Deposition", J. Kor. Phys. Soc. 53 3287-3285, (2008) https://doi.org/10.3938/jkps.53.3287
  12. T. G. Kim, E. H. Jeong, S C. Lim, S. H. Kim, G. H. Kim, S. H. Kim, H. Y. Jeon, and J. H. Youk, "PMMA-based patternable gate insulators for organic thin-film transistors", Synthetic Metals, 159, 749-753, (2009) https://doi.org/10.1016/j.synthmet.2008.11.027
  13. O. Dulub, L. A. Boatner, and U. Diebold," STM study of the geometric and electronic structure of ZnO(0001)-Zn, (0001)-O, (1010), and (1120) surfaces", Surf. Sci. 519, 201-217 (2002) https://doi.org/10.1016/S0039-6028(02)02211-2
  14. I. C. Cheng, S. Allen, and S. Wagner, "Evolution of nanocrystalline silicon thin film transistor channel layers", J. Non- Crystalline Solids, 338, 720-724, (2004) https://doi.org/10.1016/j.jnoncrysol.2004.03.076
  15. H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuwahara, S. Ishida, T. Nohda, K. Sano, H. Iwata, S. Tsuda, and S. Nakani, "High mobility poly-Si TFT by a new excimer laser annealing method for large area electronics", IEEE, IEDM 563-566, (1991)
  16. K. Yim and C. Lee, "Dependence of the electrical and optical properties of sputter-deposited ZnO:Ga films on the annealing temperature, time, and atmosphere", J. Mater. Sci: Mater. Electron, 18, 385-390, (2007) https://doi.org/10.1007/s10854-006-9040-4