• Title/Summary/Keyword: Field Multiplication

Search Result 250, Processing Time 0.024 seconds

Efficient Modular Reduction for NIST Prime P-256 (NIST 소수 P-256에서 효율적인 모듈러 감산 방법)

  • Chang, Nam Su
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.3
    • /
    • pp.511-514
    • /
    • 2019
  • Elliptic Curves Cryptosystem(ECC) provides the same level of security with relatively small key sizes, as compared to the traditional cryptosystems. The performance of ECC over GF(2m) and GF(p) depends on the efficiency of finite field arithmetic, especially the modular multiplication which is based on the reduction algorithm. In this paper, we propose a new modular reduction algorithm which provides high-speed ECC over NIST prime P-256. Detailed experimental results show that the proposed algorithm is about 25% faster than the previous methods.

Fast Sequential Optimal Normal Bases Multipliers over Finite Fields (유한체위에서의 고속 최적정규기저 직렬 연산기)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1207-1212
    • /
    • 2013
  • Arithmetic operations over finite fields are widely used in coding theory and cryptography. In both of these applications, there is a need to design low complexity finite field arithmetic units. The complexity of such a unit largely depends on how the field elements are represented. Among them, representation of elements using a optimal normal basis is quite attractive. Using an algorithm minimizing the number of 1's of multiplication matrix, in this paper, we propose a multiplier which is time and area efficient over finite fields with optimal normal basis.

An Architecture of the Fast Parallel Multiplier over Finite Fields using AOP (AOP를 이용한 유한체 위에서의 고속 병렬연산기의 구조)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.1
    • /
    • pp.69-79
    • /
    • 2012
  • In this paper, we restrict the case as m odd, n=mk, and propose and explicitly exhibit the architecture of a new parallel multiplier over the field GF($2^m$) with a type k Gaussian period which is a subfield of the field GF($2^n$) implements multiplication using the parallel multiplier over the extension field GF($2^n$). The complexity of the time and area of our multiplier is the same as that of Reyhani-Masoleh and Hasan's multiplier which is the most efficient among the known multipliers in the case of type IV.

Efficient Implementation of Finite Field Operations in NIST PQC Rainbow (NIST PQC Rainbow의 효율적 유한체 연산 구현)

  • Kim, Gwang-Sik;Kim, Young-Sik
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.527-532
    • /
    • 2021
  • In this paper, we propose an efficient finite field computation method for Rainbow algorithm, which is the only multivariate quadratic-equation based digital signature among the current US NIST PQC standardization Final List algorithms. Recently, Chou et al. proposed a new efficient implementation method for Rainbow on the Cortex-M4 environment. This paper proposes a new multiplication method over the finite field that can reduce the number of XOR operations by more than 13.7% compared to the Chou et al. method. In addition, a multiplicative inversion over that can be performed by a 4x4 matrix inverse instead of the table lookup method is presented. In addition, the performance is measured by porting the software to which the new method was applied onto RaspberryPI 3B+.

Micropropagation of Cucurbita foetidissima and Asclepias syriaca through Shoot Tip Culture of Seeding (Cucurbita foetidissima 와 Asclepias syriaca의 정단배양을 통한 기내 대량증식)

  • 염미란;이선교;백기엽
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.1
    • /
    • pp.63-69
    • /
    • 2000
  • In order to establish a micropropagation system for buffalo gourd (Cucurbita foetidissima ) and common milkweed (Asclepias syriaca), the effects of several plant growth regulators and culture temperature on shoot multiplication and rooting were investigated. In buffalo gourd, the greatest number of shoot from shoot tip culture and well growth of formed shoot were obtained on the MIS medium supplemented with 1.0 mg/L BA and 0.3 or 0.6 mg/L IAA. Whereas kinetin and 2iP were not effective for shoot multiplication in vitro. It was found that 22$^{\circ}C$ and $25^{\circ}C$ were suitable for shoot multiplication. Roots were easily formed by the addition of auxins, especially 1.0 or 2.0 mg/L IBA and 2.0 mg/L IAA. Over 90% of plants survived successfully after being transferred into the field. In common milkweed, BA was more effective than kinetin or 2iP for its micropropagation in vitro. The increased shoot weight and number of nodes per shoot were obtained on the medium containing 3.0 mg/L BA and 0.3 or 0.6 mg/L IAA. But 2iP promoted the shoot elongation. In addition. common milkweed was sensitive to culture temperature in vitro. Temperature around 22$^{\circ}C$ was favorable for shoot multiplication and growth, whereas temperature higher than $25^{\circ}C$ usually reduced the rate of shoot survival rate.

  • PDF

A Hardware Implementation of the Underlying Field Arithmetic Processor based on Optimized Unit Operation Components for Elliptic Curve Cryptosystems (타원곡선을 암호시스템에 사용되는 최적단위 연산항을 기반으로 한 기저체 연산기의 하드웨어 구현)

  • Jo, Seong-Je;Kwon, Yong-Jin
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.1
    • /
    • pp.88-95
    • /
    • 2002
  • In recent years, the security of hardware and software systems is one of the most essential factor of our safe network community. As elliptic Curve Cryptosystems proposed by N. Koblitz and V. Miller independently in 1985, require fewer bits for the same security as the existing cryptosystems, for example RSA, there is a net reduction in cost size, and time. In this thesis, we propose an efficient hardware architecture of underlying field arithmetic processor for Elliptic Curve Cryptosystems, and a very useful method for implementing the architecture, especially multiplicative inverse operator over GF$GF (2^m)$ onto FPGA and futhermore VLSI, where the method is based on optimized unit operation components. We optimize the arithmetic processor for speed so that it has a resonable number of gates to implement. The proposed architecture could be applied to any finite field $F_{2m}$. According to the simulation result, though the number of gates are increased by a factor of 8.8, the multiplication speed We optimize the arithmetic processor for speed so that it has a resonable number of gates to implement. The proposed architecture could be applied to any finite field $F_{2m}$. According to the simulation result, though the number of gates are increased by a factor of 8.8, the multiplication speed and inversion speed has been improved 150 times, 480 times respectively compared with the thesis presented by Sarwono Sutikno et al. [7]. The designed underlying arithmetic processor can be also applied for implementing other crypto-processor and various finite field applications.

Analysis on Ratio and Proportion Concepts: A Story of a Fourth Grader (4학년 아동의 비와 비례 개념 분석)

  • Lee Jong-Euk
    • Journal of Educational Research in Mathematics
    • /
    • v.16 no.2
    • /
    • pp.157-177
    • /
    • 2006
  • The concepts of ratio and proportion do not develop in isolation. Rather, they are part of the individual's multiplicative conceptual field, which includes other concepts such as multiplication, division, and rational numbers. The current study attempted to clarify the beginning of this development process. One fourth student, Kyungsu, was encourage to schematize his trial-and-error-based method, which was effective in solving so-called missing-value tasks. This study describes several advancements Kyungsu made during the teaching experiment and analyzes the challenges Kyungsu faced in attempting to schematize his method. Finally, the mathematical knowledge Kyungsu needed to further develop his ratio and proportion concepts is identified. The findings provide additional support for the view that the development of ratio and proportion concepts is embedded within the development of the multiplicative conceptual field.

  • PDF

Design of Finite Field Multiplier based on KOA (KOA 기반의 유한체 승산기 설계)

  • Byun, Gi-Young;Na, Gi-Soo;Kim, Heung-Soo
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.1-11
    • /
    • 2004
  • This paper proposes new multiplicative techniques over finite field, by using KOA. At first, we regenerate the given polynomial into a binomial or a trinomial to apply our polynomial multiplicative techniques. After this, the product polynomial is archived by defined auxiliary polynomials. To perform multiplication over $GF(2^m)$ by product polynomial, a new mod $F({\alpha})$ method is induced. Using the proposed operation techniques, multiplicative circuits over $GF(2^m)$ are constructed. We compare our circuit with the previous one as proposed by Parr. Since Parr's work is premised on $GF((2^4)^n)$, it will not apply to general cases. On the other hand, the our work more expanded adaptive field in case m=3n.

  • PDF

Low-latency Montgomery AB2 Multiplier Using Redundant Representation Over GF(2m)) (GF(2m) 상의 여분 표현을 이용한 낮은 지연시간의 몽고메리 AB2 곱셈기)

  • Kim, Tai Wan;Kim, Kee-Won
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.12 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • Finite field arithmetic has been extensively used in error correcting codes and cryptography. Low-complexity and high-speed designs for finite field arithmetic are needed to meet the demands of wider bandwidth, better security and higher portability for personal communication device. In particular, cryptosystems in GF($2^m$) usually require computing exponentiation, division, and multiplicative inverse, which are very costly operations. These operations can be performed by computing modular AB multiplications or modular $AB^2$ multiplications. To compute these time-consuming operations, using $AB^2$ multiplications is more efficient than AB multiplications. Thus, there are needs for an efficient $AB^2$ multiplier architecture. In this paper, we propose a low latency Montgomery $AB^2$ multiplier using redundant representation over GF($2^m$). The proposed $AB^2$ multiplier has less space and time complexities compared to related multipliers. As compared to the corresponding existing structures, the proposed $AB^2$ multiplier saves at least 18% area, 50% time, and 59% area-time (AT) complexity. Accordingly, it is well suited for VLSI implementation and can be easily applied as a basic component for computing complex operations over finite field, such as exponentiation, division, and multiplicative inverse.

On Efficient Algorithms for Generating Fundamental Units and their H/W Implementations over Number Fields (효율적인 수체의 기본단수계 생성 알고리즘과 H/W 구현에 관한 연구)

  • Kim, Yong-Tae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.6
    • /
    • pp.1181-1188
    • /
    • 2017
  • The unit and fundamental units of number fields are important to number field sieves testing primality of more than 400 digits integers and number field seive factoring the number in RSA cryptosystem, and multiplication of ideals and counting class number of the number field in imaginary quadratic cryptosystem. To minimize the time and space in H/W implementation of cryptosystems using fundamental units, in this paper, we introduce the Dirichlet's unit Theorem and propose our process of generating the fundamental units of the number field. And then we present the algorithm generating our fundamental units of the number field to minimize the time and space in H/W implementation and implementation results using the algorithm over the number field.