• 제목/요약/키워드: Field Effect Mobility

검색결과 517건 처리시간 0.03초

Poly-4-vinylphenol and Poly (melamine-co-formaldehyde)-based Tungsten Diselenide (WSe2) Doping Method

  • Nam, Hyo-Jik;Park, Hyung-Youl;Park, Jin-Hong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.194.1-194.1
    • /
    • 2015
  • Transition metal dichalcogenide (TMD) with layered structure, has recently been considered as promising candidate for next-generation flexible electronic and optoelectronic devices because of its superior electrical, optical, and mechanical properties.[1] Scalability of thickness down to a monolayer and van der Waals expitaxial structure without surface dangling bonds (consequently, native oxides) make TMD-based thin film transistors (TFTs) that are immune to the short channel effect (SCE) and provide very high field effect mobility (${\sim}200cm^2/V-sec$ that is comparable to the universal mobility of Si), respectively.[2] In addition, an excellent photo-detector with a wide spectral range from ultraviolet (UV) to close infrared (IR) is achievable with using $WSe_2$, since its energy bandgap varies between 1.2 eV (bulk) and 1.8 eV (monolayer), depending on layer thickness.[3] However, one of the critical issues that hinders the successful integration of $WSe_2$ electronic and optoelectronic devices is the lack of a reliable and controllable doping method. Such a component is essential for inducing a shift in the Fermi level, which subsequently enables wide modulations of its electrical and optical properties. In this work, we demonstrate n-doping method for $WSe_2$ on poly-4-vinylphenol and poly (melamine-co-formaldehyde) (PVP/PMF) insulating layer and adjust the doping level of $WSe_2$ by controlling concentration of PMF in the PVP/PMF layer. We investigated the doping of $WSe_2$ by PVP/PMF layer in terms of electronic and optoelectronic devices using Raman spectroscopy, electrical measurements, and optical measurements.

  • PDF

Molybdenum 게이트를 적용한 저온 SLS 다결정 TFT′s 소자 제작과 특성분석에 관한 연구 (A Study on Low Temperature Sequential Lateral Solidification(SLS) Poly-Si Thin Film Transistors(TFT′s) with Molybdenum Gate)

  • 고영운;박정호;김동환;박원규
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권6호
    • /
    • pp.235-240
    • /
    • 2003
  • In this paper, we present the fabrication and the characteristic analysis of sequential lateral solidification(SLS) poly-Si thin film transistors(TFT's) with molybdenum gate for active matrix liquid displays (AMLCD's) pixel controlling devices. The molybdenum gate is applied for the purpose of low temperature processing. The maximum processing temperature is 55$0^{\circ}C$ at the dopant thermal annealing step. The SLS processed poly-Si film which is reduced grain and grain boundary effect, is applied for the purpose of electrical characteristics improvements of poly-Si TFT's. The fabricated low temperature SLS poly-Si TFT's had a varying the channel length and width from 10${\mu}{\textrm}{m}$ to 2${\mu}{\textrm}{m}$. And to analyze these devices, extract electrical characteristic parameters (field effect mobility, threshold voltage, subthreshold slope, on off current etc) from current-voltage transfer characteristics curve. The extract electrical characteristic of fabricated low temperature SLS poly-Si TFT's showed the mobility of 100~400cm$^2$/Vs, the off current of about 100pA, and the on/off current ratio of about $10^7$. Also, we observed that the change of grain boundary according to varying channel length is dominant for the change of electrical characteristics more than the change of grain boundary according to varying channel width. Hereby, we comprehend well the characteristics of SLS processed poly-Si TFT's witch is recrystallized to channel length direction.

Hot Wall Epitaxy (HWE) 방법에 의한 CuGaTe$_2$ 단결정 박막 성장과 특성 (Growth and Characterization of CuGaTe$_2$ Sing1e Crystal Thin Films by Hot Wall Epitaxy)

  • 유상하;홍광준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.273-280
    • /
    • 2002
  • The stochiometric mix of evaporating materials for the CuGaTe$_2$ single crystal thin films was prepared from horizontal furnance. For extrapolation method of X-ray diffraction patterns for the CuGaTe$_2$ polycrystal, it was found tetragonal structure whose lattice constant a$\_$0/ and c$\_$0/ were 6.025 ${\AA}$ and 11.931 ${\AA}$, respectively. To obtain the single crystal thin films, CuGaTe$_2$ mixed crystal was deposited on throughly etched semi-insulator GaAs(100) substrate by the Hot Wall Epitaxy (HWE) system. The source and substrate temperature were 670 $^{\circ}C$ and 410 $^{\circ}C$ respective1y, and the thickness of the single crystal thin films is 2.1 $\mu\textrm{m}$. The crystalline structure of single crystalthin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). Hall effect on this sample was measured by the method of van der Pauw and studied on carrier density and mobility dependence on temperature. The carrier density and mobility of CuGaTe$_2$ single crystal thin films deduced from Hall data are 8.72${\times}$10$\^$23/㎥, 3.42${\times}$10$\^$-2/㎡/V$.$s at 293K, respectively. From the photocurrent spectrum by illumination of perpendicular light on the c - axis of the CuGaTe$_2$ single crystal thin film, we have found that the values of spin orbit coupling Δs.o and the crystal field splitting Δcr were 0.0791 eV and 0/2463eV at 10K, respectively. From the PL spectra at 10K, the peaks corresponding to free bound excitons and D-A pair and a broad emission band due to SA is identified. The binding energy of the free excitons are determined to be 0.0470eV and the dissipation energy of the donor -bound exciton and acceptor-bound exciton to be 0.0490eV, 0.00558eV, respectively.

  • PDF

균일하고 0 V에 가까운 Dirac 전압을 갖는 그래핀 전계효과 트랜지스터 제작 공정 (Fabrication of Graphene Field-effect Transistors with Uniform Dirac Voltage Close to Zero)

  • 박홍휘;최무한;박홍식
    • 센서학회지
    • /
    • 제27권3호
    • /
    • pp.204-208
    • /
    • 2018
  • Monolayer graphene grown via chemical vapor deposition (CVD) is recognized as a promising material for sensor applications owing to its extremely large surface-to-volume ratio and outstanding electrical properties, as well as the fact that it can be easily transferred onto arbitrary substrates on a large-scale. However, the Dirac voltage of CVD-graphene devices fabricated with transferred graphene layers typically exhibit positive shifts arising from transfer and photolithography residues on the graphene surface. Furthermore, the Dirac voltage is dependent on the channel lengths because of the effect of metal-graphene contacts. Thus, large and nonuniform Dirac voltage of the transferred graphene is a critical issue in the fabrication of graphene-based sensor devices. In this work, we propose a fabrication process for graphene field-effect transistors with Dirac voltages close to zero. A vacuum annealing process at $300^{\circ}C$ was performed to eliminate the positive shift and channel-length-dependence of the Dirac voltage. In addition, the annealing process improved the carrier mobility of electrons and holes significantly by removing the residues on the graphene layer and reducing the effect of metal-graphene contacts. Uniform and close to zero Dirac voltage is crucial for the uniformity and low-power/voltage operation for sensor applications. Thus, the current study is expected to contribute significantly to the development of graphene-based practical sensor devices.

MOCVD에 의한 GaAs/AlGaAs 초격자 및 HEMT 구조의 성장 (Growth of GaAs/AlGaAs Superlattice and HEMT Structures by MOCVD)

  • 김무성;김용;엄경숙;김성일;민석기
    • 대한전자공학회논문지
    • /
    • 제27권2호
    • /
    • pp.81-92
    • /
    • 1990
  • MOCVD에 의하여 초격자 및 HEMT 구조를 성장하고 그 특성을 보고한다. GaAs/AlGaAs의 경우, 주기성(periodicity),계면 급준성, Al 조성 균일성을 경사연마 및 double crystal x-ray 측정에 의하여 확인하였고, 고립 양자우물의 양자효과(quantum size effect)에 의한 PL(photoluminescence) 스펙트럼을 관측하였다. 이 PL FWHM (full width at half maximum)과 우물 두께의 관계로 부터 계면 급준성이 1 monolayer fluctuation 정도인 초격자 구조가 성장되었음을 확인하였다. 한편, HEMT 구조의 경우에 헤테로 계면에 형성된 2차원 전자층의 존재를 C-V profile, SdH(shu-bnikov-de Haas)진동, 저온 Hall 측정을 통하여 확인하였다. 저온 Hall 측정에서 15K에서 sheet carrier density $5.5{\times}10^{11}cm^-2$,mobility $69,000cm^2/v.sec$, 77K에서 sheet carrier density $6.6{\times}10^{11}cm^-2$, mobility $41,200cm^2/v.sec$ 이었다. 또한 quantum Hall effect 측정으로 부터 잘 형성된 SdH 진동 및 quantized Hall plateau를 관측하였다.

  • PDF

단채널 GaAs MESFET 및 SOI 구조의 Si JFET의 2차원 전계효과에 대한 해석적 모델에 대한 연구 (An analytical modeling for the two-dimensional field effect of a short channel GaAs MESFET and SOI-structured Si JFET)

  • 최진욱;지순구;최수홍;서정하
    • 대한전자공학회논문지SD
    • /
    • 제42권1호
    • /
    • pp.25-32
    • /
    • 2005
  • 본 논문에서는 단 채널 GaAs MESFET과 SOI-구조의 Si JFET가 갖는 전형적인 특성: i) 드레인 전압 인가에 의한 문턱전압 roll-off, ii) 포화영역에서의 유한한 ac 출력저항, iii) 채널길이에 대한 드레인 포화전류의 의존성 약화, 등을 통합적으로 기술할 수 있는 해석적 모델을 제안하였다. 채널 방향의 전계 변화를 포함하는 새로운 형태의 가정을 기존의 GCA와 대체하고, 채널의 전류 연속성과 전계-의존 이동도를 고려하여, 공핍영역과 전도 채널에서 2차원 전위분포 식을 도출해 내었다. 이 결과, 문턱전압, 드레인 전류의 표현 식들이 동작전압전 구간의 영역에 걸쳐 비교적 정확하게 도출되었다. 또한 본 모델은 기존의 채널 shortening 모델에 비해 Early 효과에 대한 보다 더 적절한 설명을 제공하고 있음을 보이고 있다.

Sol-gel deposited TiInO thin-films transistor with Ti effect

  • Kim, Jung-Hye;Son, Dae-Ho;Kim, Dae-Hwan;Kang, Jin-Kyu;Ha, Ki-Ryong
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.200-200
    • /
    • 2010
  • In recent times, metal oxide semiconductors thin films transistor (TFT), such as zinc and indium based oxide TFTs, have attracted considerable attention because of their several advantageous electrical and optical properties. There are many deposition methods for fabrication of ZnO-based materials such as chemical vapor deposition, RF/DC sputtering and pulsed laser deposition. However, these vacuum process require expensive equipment and result in high manufacturing costs. Also, the methods is difficult to fabricate various multicomponent oxide semiconductor. Recently, several groups report solution processed metal oxide TFTs for low cost and non vacuum process. In this study, we have newly developed solution-processed TFTs based on Ti-related multi-component transparent oxide, i. e., InTiO as the active layer. We propose new multicomponent oxide, Titanium indium oxide(TiInO), to fabricate the high performance TFT through the sol-gel method. We investigated the influence of relative compositions of Ti on the electrical properties. Indium nitrate hydrate [$In(NO^3).xH_2O$] and Titanium isobutoxide [$C_{16}H_{36}O_4Ti$] were dissolved in acetylacetone. Then monoethanolamine (MEA) and acetic acid ($CH_3COOH$) were added to the solution. The molar concentration of indium was kept as 0.1 mol concentration and the amount of Ti was varied according to weighting percent (0, 5, 10%). The complex solutions become clear and homogeneous after stirring for 24 hours. Heavily boron (p+) doped Si wafer with 100nm thermally grown $SiO_2$ serve as the gate and gate dielectric of the TFT, respectively. TiInO thin films were deposited using the sol-gel solution by the spin-coating method. After coating, the films annealed in a tube furnace at $500^{\circ}C$ for 1hour under oxygen ambient. The 5% Ti-doped InO TFT had a field-effect mobility $1.15cm^2/V{\cdot}S$, a threshold voltage of 4.73 V, an on/off current ratio grater than $10^7$, and a subthreshold slop of 0.49 V/dec. The 10% Ti-doped InO TFT had a field-effect mobility $1.03\;cm^2/V{\cdot}S$, a threshold voltage of 1.87 V, an on/off current ration grater than $10^7$, and a subthreshold slop of 0.67 V/dec.

  • PDF

Fabrication of excimer laser annealed poly-si thin film transistor by using an elevated temperature ion shower doping

  • Park, Seung-Chul;Jeon, Duk-Young
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제11권11호
    • /
    • pp.22-27
    • /
    • 1998
  • We have investigated the effect of an ion shower doping of the laser annealed poly-Si films at an elevated substrate temperatures. The substrate temperature was varied from room temperature to 300$^{\circ}C$ when the poly-Si film was doped with phosphorus by a non-mass-separated ion shower. Optical, structural, and electrical characterizations have been performed in order to study the effect of the ion showering doping. The sheet resistance of the doped poly-Si films was decreased from7${\times}$106 $\Omega$/$\square$ to 700 $\Omega$/$\square$ when the substrate temperature was increased from room temperature to 300$^{\circ}C$. This low sheet resistance is due to the fact that the doped film doesn't become amorphous but remains in the polycrystalline phase. The mildly elevated substrate temperature appears to reduce ion damages incurred in poly-Si films during ion-shower doping. Using the ion-shower doping at 250$^{\circ}C$, the field effect mobility of 120 $\textrm{cm}^2$/(v$.$s) has been obtained for the n-channel poly-Si TFTs.

  • PDF

High Performance Poly-Si TFT (${\mu}>290cm^2/Vsec$) Direct Fabricated on Plastic Substrate below $170^{\circ}C$

  • Kwon, Jang-Yeon;Kim, Do-Young;Jung, Ji-Sim;Kim, Jong-Man;Lim, Hyuck;Park, Kyung-Bae;Cho, Hans-S;Zhang, Xiaoxin;Yin, Huaxiang;Xianyu, Wenxu;Noguchi, Takashi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2005년도 International Meeting on Information Displayvol.I
    • /
    • pp.149-152
    • /
    • 2005
  • We present the characterization of poly-Si TFT fabricated below on Plastic Substrate below $170^{\circ}C$ on plastic substrate using excimer laser crystallization of Xe sputtered Si films. Gate insulator with a breakdown field exceeding 8 MV/cm was deposited by using inductively coupled plasma CVD. Finally, we successfully fabricate TFT with a electron field-effect mobility value greater than $290\;cm^2/Vsec$.

  • PDF

An Application of High-Power Ultrasound to Rubber Recycling

  • Hong, Chang-Kook;Isayev, A.I.
    • Elastomers and Composites
    • /
    • 제38권2호
    • /
    • pp.103-121
    • /
    • 2003
  • The application of powerful ultrasound to rubber recycling is a very recent field of study. An ultrasonic field creates high frequency extension-contraction stresses by acoustic cavitation. The breakdown of rubber network occurs primarily around pulsating cavities due to the highest level of strain produced by high-power ultrasound. Stronger reductions of cross-link density were observed at a higher pressure, indicating an important role of pressure during ultrasonic recycling. Visible bubbles were observed during ultrasonic treatment as a proof of acoustic cavitation. Shearing effect has a significant influence on improving the efficiency of ultrasonic treatment. After the ultrasonic treatment, the cross-link densities of NR/SBR blends were lower than those of NR and SBR due to the reduced degree of unsaturation and chemical reactions. Carbon black fillers increase the probability of bond scission during ultrasonic treatment, due to the restricted mobility. The mechanical properties of ground tire rubber (GRT)/HDPE blends were improved by ultrasonic treatment and dynamic revulcanization. Ultrasonic treatment of GRT in the presence of HDPE matrix was found to give better mechanical properties due to the chemical reactions between rubber and plastic phases.