• Title/Summary/Keyword: Feynman functional

Search Result 21, Processing Time 0.028 seconds

GENERALIZED FOURIER-FEYNMAN TRANSFORM AND SEQUENTIAL TRANSFORMS ON FUNCTION SPACE

  • Choi, Jae-Gil;Chang, Seung-Jun
    • Journal of the Korean Mathematical Society
    • /
    • v.49 no.5
    • /
    • pp.1065-1082
    • /
    • 2012
  • In this paper we first investigate the existence of the generalized Fourier-Feynman transform of the functional F given by $$F(x)={\hat{\nu}}((e_1,x)^{\sim},{\ldots},(e_n,x)^{\sim})$$, where $(e,x)^{\sim}$ denotes the Paley-Wiener-Zygmund stochastic integral with $x$ in a very general function space $C_{a,b}[0,T]$ and $\hat{\nu}$ is the Fourier transform of complex measure ${\nu}$ on $B({\mathbb{R}}^n)$ with finite total variation. We then define two sequential transforms. Finally, we establish that the one is to identify the generalized Fourier-Feynman transform and the another transform acts like an inverse generalized Fourier-Feynman transform.

STABILITY THEOREM FOR THE FEYNMAN INTEGRAL APPLIED TO MULTIPLE INTEGTALS

  • Kim, Bong-Jin
    • The Pure and Applied Mathematics
    • /
    • v.8 no.1
    • /
    • pp.71-78
    • /
    • 2001
  • In 1984, Johnson[A bounded convergence theorem for the Feynman in-tegral, J, Math. Phys, 25(1984), 1323-1326] proved a bounded convergence theorem for hte Feynman integral. This is the first stability theorem of the Feynman integral as an $L(L_2 (\mathbb{R}^N), L_2(\mathbb{R}^{N}))$ theory. Johnson and Lapidus [Generalized Dyson series, generalized Feynman digrams, the Feynman integral and Feynmans operational calculus. Mem, Amer, Math, Soc. 62(1986), no 351] studied stability theorems for the Feynman integral as an $L(L_2 (\mathbb{R}^N), L_2(\mathbb{R}^{N}))$ theory for the functional with arbitrary Borel measure. These papers treat functionals which involve only a single integral. In this paper, we obtain the stability theorems for the Feynman integral as an $L(L_1 (\mathbb{R}^N), L_{\infty}(\mathbb{R}^{N}))$theory for the functionals which involve double integral with some Borel measures.

  • PDF

A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRALS AND FOURIER-FEYNMAN TRANSFORMS ON FUNCTION SPACE

  • Chang, Seung-Jun;Lee, Il-Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.437-456
    • /
    • 2003
  • In this paper we use a generalized Brownian motion process to define a generalized analytic Feynman integral. We then establish a Fubini theorem for the function space integral and generalized analytic Feynman integral of a functional F belonging to Banach algebra $S(L^2_{a,b}[0,T])$ and we proceed to obtain several integration formulas. Finally, we use this Fubini theorem to obtain several Feynman integration formulas involving analytic generalized Fourier-Feynman transforms. These results subsume similar known results obtained by Huffman, Skoug and Storvick for the standard Wiener process.

A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRAL ON FUNCTION SPACE

  • Lee, Il Yong;Choi, Jae Gil;Chang, Seung Jun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.217-231
    • /
    • 2013
  • In this paper we establish a Fubini theorem for generalized analytic Feynman integral and $L_1$ generalized analytic Fourier-Feynman transform for the functional of the form $$F(x)=f({\langle}{\alpha}_1,\;x{\rangle},\;{\cdots},\;{\langle}{{\alpha}_m,\;x{\rangle}),$$ where {${\alpha}_1$, ${\cdots}$, ${\alpha}_m$} is an orthonormal set of functions from $L_{a,b}^2[0,T]$. We then obtain several generalized analytic Feynman integration formulas involving generalized analytic Fourier-Feynman transforms.

MULTIPLE Lp ANALYTIC GENERALIZED FOURIER-FEYNMAN TRANSFORM ON A FRESNEL TYPE CLASS

  • Chang, Seung Jun;Lee, Il Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.79-99
    • /
    • 2006
  • In this paper, we define a class of functional defined on a very general function space $C_{a,b}[0,T]$ like a Fresnel class of an abstract Wiener space. We then define the multiple $L_p$ analytic generalized Fourier-Feynman transform and the generalized convolution product of functionals on function space $C_{a,b}[0,T]$. Finally, we establish some relationships between the multiple $L_p$ analytic generalized Fourier-Feynman transform and the generalized convolution product for functionals in $\mathcal{F}(C_{a,b}[0,T])$.

  • PDF

$L_1$ analytic fourier-feynman transform on the fresnel class of abstract wiener space

  • Ahn, Jae-Moon
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.1
    • /
    • pp.99-117
    • /
    • 1998
  • Let $(B, H, p_1)$ be an abstract Wiener space and $F(B)$ the Fresnel class on $(B, H, p_1)$ which consists of functionals F of the form : $$ F(x) = \int_{H} exp{i(h,x)^\sim} df(h), x \in B, $$ where $(\cdot, \cdot)^\sim$ is a stochastic inner product between H and B, and f is in $M(H)$, the space of complex Borel measures on H. We introduce an $L_1$ analytic Fourier-Feynman transforms for functionls in $F(B)$. Furthermore, we introduce a convolution on $F(B)$, and then verify the existence of the $L_1$ analytic Fourier-Feynman transform for the convolution product of two functionals in $F(B)$, and we establish the relationships between the $L_1$ analytic Fourier-Feynman tranform of the convolution product for two functionals in $F(B)$ and the $L_1$ analytic Fourier-Feynman transforms for each functional. Finally, we show that most results in [7] follows from our results in Section 3.

  • PDF

A REPRESENTATION FOR AN INVERSE GENERALIZED FOURIER-FEYNMAN TRANSFORM ASSOCIATED WITH GAUSSIAN PROCESS ON FUNCTION SPACE

  • Choi, Jae Gil
    • The Pure and Applied Mathematics
    • /
    • v.28 no.4
    • /
    • pp.281-296
    • /
    • 2021
  • In this paper, we suggest a representation for an inverse transform of the generalized Fourier-Feynman transform on the function space Ca,b[0, T]. The function space Ca,b[0, T] is induced by the generalized Brownian motion process with mean function a(t) and variance function b(t). To do this, we study the generalized Fourier-Feynman transform associated with the Gaussian process Ƶk of exponential-type functionals. We then establish that a composition of the Ƶk-generalized Fourier-Feynman transforms acts like an inverse generalized Fourier-Feynman transform.

THE PARTIAL DIFFERENTIAL EQUATION ON FUNCTION SPACE WITH RESPECT TO AN INTEGRAL EQUATION

  • Chang, Seung-Jun;Lee, Sang-Deok
    • The Pure and Applied Mathematics
    • /
    • v.4 no.1
    • /
    • pp.47-60
    • /
    • 1997
  • In the theory of the conditional Wiener integral, the integrand is a functional of the standard Wiener process. In this paper we consider a conditional function space integral for functionals of more general stochastic process and the generalized Kac-Feynman integral equation. We first show that the existence of a partial differential equation. We then show that the generalized Kac-Feynman integral equation is equivalent to the partial differential equation.

  • PDF

GENERALIZED ANALYTIC FEYNMAN INTEGRAL VIA FUNCTION SPACE INTEGRAL OF BOUNDED CYLINDER FUNCTIONALS

  • Chang, Seung-Jun;Choi, Jae-Gil;Chung, Hyun-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.475-489
    • /
    • 2011
  • In this paper, we use a generalized Brownian motion to define a generalized analytic Feynman integral. We then obtain some results for the generalized analytic Feynman integral of bounded cylinder functionals of the form F(x) = $\hat{v}$(($g_1,x)^{\sim}$,..., $(g_n,x)^{\sim}$) defined on a very general function space $C_{a,b}$[0,T]. We also present a change of scale formula for function space integrals of such cylinder functionals.

EVALUATION FORMULAS FOR AN ANALOGUE OF CONDITIONAL ANALYTIC FEYNMAN INTEGRALS OVER A FUNCTION SPACE

  • Cho, Dong-Hyun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.655-672
    • /
    • 2011
  • Let $C^r$[0,t] be the function space of the vector-valued continuous paths x : [0,t] ${\rightarrow}$ $R^r$ and define $X_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{(n+1)r}$ and $Y_t$ : $C^r$[0,t] ${\rightarrow}$ $R^{nr}$ by $X_t(x)$ = (x($t_0$), x($t_1$), ..., x($t_{n-1}$), x($t_n$)) and $Y_t$(x) = (x($t_0$), x($t_1$), ..., x($t_{n-1}$)), respectively, where 0 = $t_0$ < $t_1$ < ... < $t_n$ = t. In the present paper, with the conditioning functions $X_t$ and $Y_t$, we introduce two simple formulas for the conditional expectations over $C^r$[0,t], an analogue of the r-dimensional Wiener space. We establish evaluation formulas for the analogues of the analytic Wiener and Feynman integrals for the function $G(x)=\exp{{\int}_0^t{\theta}(s,x(s))d{\eta}(s)}{\psi}(x(t))$, where ${\theta}(s,{\cdot})$ and are the Fourier-Stieltjes transforms of the complex Borel measures on ${\mathbb{R}}^r$. Using the simple formulas, we evaluate the analogues of the conditional analytic Wiener and Feynman integrals of the functional G.