References
-
R. H. Cameron and D. A. Storvick, An
$L_{2}$ analytic Fourier-Feynman transform, Michigan Math. J. 23 (1976), no. 1, 1-30. https://doi.org/10.1307/mmj/1029001617 - R. H. Cameron and D. A. Storvick, Relationships between the Wiener integral and the analytic Feynman integral, Rend. Circ. Mat. Palermo (2) Suppl. No. 17 (1987), 117-133.
- R. H. Cameron and D. A. Storvick, Change of scale formulas for Wiener integral, Rend. Circ. Mat. Palermo (2) Suppl. No. 17 (1987), 105-115.
- K. S. Chang, G. W. Johnson, and D. L. Skoug, Necessary and sufficient conditions for the Fresnel integrability of certain classes of functions, J. Korean Math. Soc. 21 (1984), no. 1, 21-29.
- K. S. Chang, G. W. Johnson, and D. L. Skoug, Necessary and sufficient conditions for membership in the Banach algebra S for certain classes of functions, Rend. Circ. Mat. Palermo (2) Suppl. No. 17 (1987), 153-171.
- S. J. Chang and D. M. Chung, Conditional function space integrals with applications, Rocky Mountain J. Math. 26 (1996), no. 1, 37-62. https://doi.org/10.1216/rmjm/1181072102
- S. J. Chang, J. G. Choi, and D. Skoug, Integration by parts formulas involving generalized Fourier-Feynman transforms on function space, Trans. Amer. Math. Soc. 355 (2003), no. 7, 2925-2948. https://doi.org/10.1090/S0002-9947-03-03256-2
- S. J. Chang, J. G. Choi, and D. Skoug, Evaluation formulas for conditional function space integrals. I, Stoch. Anal. Appl. 25 (2007), no. 1, 141-168. https://doi.org/10.1080/07362990601052185
- S. J. Chang and D. Skoug, Generalized Fourier-Feynman transforms and a rst variation on function space, Integral Transforms Spec. Funct. 14 (2003), no. 5, 375-393. https://doi.org/10.1080/1065246031000074425
- B. S. Kim and T. S. Kim, Change of scale formulas for Wiener integral over paths in abstract Wiener space, Commun. Korean Math. Soc. 21 (2006), no. 1, 75-88. https://doi.org/10.4134/CKMS.2006.21.1.075
- Y. S. Kim, Analytic Feynman integrals, Fourier-Feynman transforms and change of scale formula for Wiener integrals over paths on abstract Wiener spaces, Integral Transforms Spec. Funct. 16 (2005), no. 4, 323-335. https://doi.org/10.1080/10652460512331342552
- Y. S. Kim, J. M. Ahn, K. S. Chang, and I. Yoo, A change of scale formula for Wiener integrals on the product abstract Wiener spaces, J. Korean Math. Soc. 33 (1996), no. 2, 269-282.
- H. L. Royden, Real Analysis, Third edition, Macmillan, 1988.
- J. Yeh, Singularity of Gaussian measures on function spaces induced by Brownian motion processes with non-stationary increments, Illinois J. Math. 15 (1971), 37-46.
- J. Yeh, Stochastic Processes and the Wiener Integral, Marcel Dekker, Inc., New York, 1973.
- I. Yoo, Sequential Yeh-Feynman integrals, Doctoral Thesis, Yonsei University, 1987.
- I. Yoo and D. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces, Internat. J. Math. Math. Sci. 17 (1994), no. 2, 239-247. https://doi.org/10.1155/S0161171294000359
- I. Yoo and D. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces. II, J. Korean Math. Soc. 31 (1994), no. 1, 115-129.
- I. Yoo, T. S. Song, and B. S. Kim, A change of scale formula for Wiener integrals of unbounded functions. II, Commun. Korean Math. Soc. 21 (2006), no. 1, 117-133. https://doi.org/10.4134/CKMS.2006.21.1.117
- I. Yoo, T. S. Song, B. S. Kim, and K. S. Chang, A change of scale formula for Wiener integrals of unbounded functions, Rocky Mountain J. Math. 34 (2004), no. 1, 371-389. https://doi.org/10.1216/rmjm/1181069911
- I. Yoo and G. J. Yoon, Change of scale formulas for Yeh-Wiener integrals, Commun. Korean Math. Soc. 6 (1991), no. 1, 19-26.
Cited by
- Change of path formula on the function space with applications vol.25, pp.3, 2014, https://doi.org/10.1016/j.indag.2014.02.004
- A Modified Analytic Function Space Feynman Integral and Its Applications vol.2014, 2014, https://doi.org/10.1155/2014/671960
- New expressions of the modified generalized integral transform via the translation theorem with applications vol.29, pp.2, 2018, https://doi.org/10.1080/10652469.2017.1414214