• 제목/요약/키워드: Feynman

검색결과 151건 처리시간 0.023초

On Finite Integrals Involving Jacobi Polynomials and the $\bar{H}$-function

  • Sharma, Rajendra P.
    • Kyungpook Mathematical Journal
    • /
    • 제46권3호
    • /
    • pp.307-313
    • /
    • 2006
  • In this paper, we first establish an interesting new finite integral whose integrand involves the product of a general class of polynomials introduced by Srivastava [13] and the generalized H-function ([9], [10]) having general argument. Next, we present five special cases of our main integral which are also quite general in nature and of interest by themselves. The first three integrals involve the product of $\bar{H}$-function with Jacobi polynomial, the product of two Jacobi polynomials and the product of two general binomial factors respectively. The fourth integral involves product of Jacobi polynomial and well known Fox's H-function and the last integral involves product of a Jacobi polynomial and 'g' function connected with a certain class of Feynman integral which may have practical applications.

  • PDF

A CHANGE OF SCALE FORMULA FOR WIENER INTEGRALS OF UNBOUNDED FUNCTIONS II

  • Yoo, Il;Song, Teuk-Seob;Kim, Byoung-Soo
    • 대한수학회논문집
    • /
    • 제21권1호
    • /
    • pp.117-133
    • /
    • 2006
  • Cameron and Storvick discovered change of scale formulas for Wiener integrals of bounded functions in a Banach algebra S of analytic Feynman integrable functions on classical Wiener space. Yoo and Skoug extended these results to abstract Wiener space for a generalized Fresnel class $F_{A1,A2}$ containing the Fresnel class F(B) which corresponds to the Banach algebra S on classical Wiener space. In this paper, we present a change of scale formula for Wiener integrals of various functions on $B^2$ which need not be bounded or continuous.

AN APPROACH TO SOLUTION OF THE SCHRÖDINGER EQUATION USING FOURIER-TYPE FUNCTIONALS

  • Chang, Seung Jun;Choi, Jae Gil;Chung, Hyun Soo
    • 대한수학회지
    • /
    • 제50권2호
    • /
    • pp.259-274
    • /
    • 2013
  • In this paper, we consider the Fourier-type functionals on Wiener space. We then establish the analytic Feynman integrals involving the ${\diamond}$-convolutions. Further, we give an approach to solution of the Schr$\ddot{o}$dinger equation via Fourier-type functionals. Finally, we use this approach to obtain solutions of the Schr$\ddot{o}$dinger equations for harmonic oscillator and double-well potential. The Schr$\ddot{o}$dinger equations for harmonic oscillator and double-well potential are meaningful subjects in quantum mechanics.

결합공간과 반결합공간 (제1보) (Bonding and Antibonding Regions (I))

  • 김호징;이덕환
    • 대한화학회지
    • /
    • 제23권1호
    • /
    • pp.15-19
    • /
    • 1979
  • Integral Hellmann-Feynman Theorem과 천이밀도의 positive definite한 성질로 부터, 천이 밀도 공간을 "결합공간"과 "반결합공간"으로 구분할 수 있음을 보였고, 이러한 개념의 유용성을 H2계에 대하여 증명하였다. 핵의 배치의 변화에 기인한 전자 섭동에너지의 본질을 이 개념을 이용함으로써 성공적으로 이해할 수 있으리라는 결론을 얻었다. 천이밀도의 성질에 관하여 논의하였다.

  • PDF

A CHANGE OF SCALE FORMULA FOR ENERALIZED WIENER INTEGRALS

  • Kim, Byoung Soo;Song, Teuk Seob;Yoo, Il
    • 충청수학회지
    • /
    • 제24권3호
    • /
    • pp.517-528
    • /
    • 2011
  • Cameron and Storvick introduced change of scale formulas for Wiener integrals of bounded functions in the Banach algebra $\mathcal{S}$ of analytic Feynman integrable functions on classical Wiener space. Yoo and Skoug extended this result to an abstract Wiener space. Also Yoo, Song, Kim and Chang established a change of scale formula for Wiener integrals of functions on abstract Wiener space which need not be bounded or continuous. In this paper, we investigate a change of scale formula for generalized Wiener integrals of various functions on classical Wiener space.

A CAMERON-STORVICK THEOREM ON C2a,b[0, T ] WITH APPLICATIONS

  • Choi, Jae Gil;Skoug, David
    • 대한수학회논문집
    • /
    • 제36권4호
    • /
    • pp.685-704
    • /
    • 2021
  • The purpose of this paper is to establish a very general Cameron-Storvick theorem involving the generalized analytic Feynman integral of functionals on the product function space C2a,b[0, T]. The function space Ca,b[0, T] can be induced by the generalized Brownian motion process associated with continuous functions a and b. To do this we first introduce the class ${\mathcal{F}}^{a,b}_{A_1,A_2}$ of functionals on C2a,b[0, T] which is a generalization of the Kallianpur and Bromley Fresnel class ${\mathcal{F}}_{A_1,A_2}$. We then proceed to establish a Cameron-Storvick theorem on the product function space C2a,b[0, T]. Finally we use our Cameron-Storvick theorem to obtain several meaningful results and examples.

A GENERALIZED SIMPLE FORMULA FOR EVALUATING RADON-NIKODYM DERIVATIVES OVER PATHS

  • Cho, Dong Hyun
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.609-631
    • /
    • 2021
  • Let C[0, T] denote a generalized analogue of Wiener space, the space of real-valued continuous functions on the interval [0, T]. Define $Z_{\vec{e},n}$ : C[0, T] → ℝn+1 by $$Z_{\vec{e},n}(x)=\(x(0),\;{\int}_0^T\;e_1(t)dx(t),{\cdots},\;{\int}_0^T\;e_n(t)dx(t)\)$$, where e1,…, en are of bounded variations on [0, T]. In this paper we derive a simple evaluation formula for Radon-Nikodym derivatives similar to the conditional expectations of functions on C[0, T] with the conditioning function $Z_{\vec{e},n}$ which has an initial weight and a kind of drift. As applications of the formula, we evaluate the Radon-Nikodym derivatives of various functions on C[0, T] which are of interested in Feynman integration theory and quantum mechanics. This work generalizes and simplifies the existing results, that is, the simple formulas with the conditioning functions related to the partitions of time interval [0, T].