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SEQUENTIAL YEH-FEYNMAN INTEGRALS OF CERTAIN
CLASSES OF FUNCTIONALS

KUN Soo CHANG, ]EONG GyOO KIM, IL Yoo AND KI SEONG CHoI

1. Introduction

Let C2-C2 (Q) be the Yeh-Wiener space (or two parameter Wiener
space) on Q= [a, bJ X Cc, dJ, that is, the space of continuous functions
x(s, t) on Q such that x(s, c) =x(a, t) =0. Let my be the Yeh-Wiener
measure on C2 (Q) .

A subset E of C2 (Q) is said to be scale-invariant measurable provided
pE is Yeh-Wiener measurable for every p>O, and a scale-invariant
measurable set N is said to be scale-invariant null provided my(pN) =0
for every p>O ([6J). A property that holds except on a scale-invariant
null set is said to hold scale-invariant almost everywhere (s-a.e.). A
function F is said to be scale-invariant measurable provided F is defined
on a scale-invariant measurable set and F(p (.)) is Yeh-Wiener mea­
surable for every p>0. Two functionals F and G on C2 (Q) are said
to be equal s-a.e. (F-::::;G) if for each p>0, the equation F(px) =G (px)
holds for a.e. x in C2 (Q).

Let F be a functional such that the Yeh-Wiener integral

J(A) = f F(J..-1I2x )dx
c.

exists for all real A>O. If there exists a function J*(A) analytic in the
half-plane Re A>O such that J*(J..) =J(A) for all real A>O, then we
define J*(A) to be the analytic Yeh-Wiener integral of F over C2 (Q)
with parameter A, and for Re A>O, we write
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Sanyw
1F(x)dx=J*(l).

c.

Let q be a non-zero real parameter and let F be a functional whose
analytic Yeh-Wiener integral exists for Re 1>0. Then if the following
limit exists, we call it the analytic Yeh-Feynman integral of F over
C2 (Q) with parameter q, and we write

f
anYf• fanYWl
c. F(x)dx= }i~q c. F(x)dx.

Re 1>0

Let Q=[a,bJ X [c,dJ and let a=sO<sl<"'<Sl=b and c=tO<t1<·..
<tm=d determine a partition a over Q. Let f(s, t) be a real valued
function defined on Q. A function f(s, t) is said to be of bounded
variation on Q(fEBV(Q» provided the following three conditions hold;

( i) there exists a constant K such that for any partition a

( ii) f(s, d) is a function of bounded variation in s,
(iii) f(b, t) is a function of bounded variation in t.

And the total variation of f over Q, Var (f, Q), is defined to be the
supremum of the sums in (1.1) over all a.

Let f(s, t) be a real valued function on Q and let R= [a', b'] X Cc', d']
be a subrectangle of Q and JR(f) = f(b', d') - f(a', d') - f(b', c') +
f(a', c'). A function f(s, t) is absolutely continuous on Q(fEAC(Q»
if the following two conditions are satisfied;

(i) given e>O, there exists 0>0 suth that 2: IJR(f) I<e
RES

whenever S is the finite collection of pairwise non-overlapping subrec­
tangles of Q with 2:m(R)<o, where m denotes Lebesgue measure on
R2 RES,

(ii) the functions f(·,d) and f(b,·) are absolutely continuous
functions of a single variable on [a, b] and Cc, dj, respectively.

In recent papers [5,20J, we treat some Banach algebras S, S, and s*
of functionals on Yeh-Wiener space which are a kind of stochastic
Fourier transform of complex Borel measures on L 2 (Q). Now we briefly
review them.
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Let D 2=D2 (Q) be the class of elements xEC2(Q) such that xEACCQ)
and (j2x(s,t)/osOtEL2(Q). Let 1=1(L2(Q)) be the class of complex
measures of finite variation defined on .9!J(L2 ), the Borel measurable
subsets of L 2(Q). If p.E1, we set 1Ip.II=var p. over L 2• (In this
paper, L2 always means real L2• )

The functionl:l,l F defined on a subset of C2 (Q) that contains D 2 (Q)
is said to be an element of 5=5(L2) if there exists a measure p.EM
such that for xED2 (Q),

(1.2) F(x) = fL2exP{ifQv(s,t) 02~~~t) dsdt} dp. (v).

The definition of the space of functionals S involves the Paley-Wiener­
Zygmund (P.W.Z.) integral. Next we give the definition of the P.W.Z.
integral, a simple type of stochastic integral, for functions of two
variables.

Let {s6n} be a complete orthonormal (C.O.N.) set of real valued
functions of bounded variation on Q. Let vEL2(Q) and

Vn(S, t) =j~s6j(S, t) fQV(p, q)s6j(P, q)dpdq.

Then the P.W.Z. integral with two parameters is defined by

f - Ill.' J -QV(s, t)dx(s, t)= QV(s, t)dx(s, t)

=limf vn(s, t)dx(s, t)
n .... oo Q

The Riemann-Stieltjes integral f QV(s, t)dx(s, t) is then defined in the

usual way [lOJ. A paper of Yeh [19J has a nice discussion of the n­
dimensional Riemann-Stieltjes integral and some of its properties.
Actually Yeh doesn't include conditions (ii) and (iii) as part of definition
of bounded variation. Of course all of the results he obtains concerning
the Riemann-Stieltjes integral are true in our more restrictive setting.

Let S=S(L2) be the space of functionals F expressible in the form

(1. 3) F(x)=f exp{if v(s,t)dx(s,t)}dp.(v)
L 2 Q

for s-a.e. x in C2, where p.EM.
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If F(x) =G(x) for s-a.e. x in C2 (Q) and for every x in D2 (Q), we
shall write F"""G.

From Theorem 4 of [16J. we have that if vEL2 (Q) and xED2 (Q),
then

(1.4) fQv(s,t)dx(s,t)= fQv(s,t) (J2~~~t) dsdt.

Thus if vEL2 (Q) and {4>n}, {cftn} are two C.O.N. sequences of BV(Q),
then for xED2 (Q),

f Ill.! f -exp {i v(s, t)dx(s, t)} dp.(v)
L 2 Q

f l.p.! f -'"-' exp{i v(s,t)dx(s,t)}dp.(v).
L 2 Q

We now introduce the class of functionals S*. Let S*=S*(L2) be the
space of functionals F expressible in the form

(1. 5) F(x)=f exp{if v(s, t)dx(s, t)} Pp. (v)
L 2 Q

for s-a.e. xEC2 (Q) and for every xED2 (Q), where p.EM.

2. Preliminaries and some results

In this section, we extend the concept of the sequential Feynman
integral to that of the sequential Yeh-Feynman integral and prove the
L 2 convergence of averaged functions.

NOTATION. Let a subdivision (1 of Q be given;

Letx,,-x,,((s,t),A) be a quadratic function in C2 (Q) based on a
subdivis"ion (1 and the matrix of real numbers A= {aj,k}, and defined by

(2.1) x,,((s, t), A)

+ aj,k-l- a j-l,k-l (S-Sj-l) + aj-l,k-aj-l,k-l (t-tk-l)
Sk-Sk-l tk-tk-l

+aj-l,k-l
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As A= {aj,k} ranges over all fm-dimensional real space, the quadratic
functions x" ( ( " '), A) range over all quadratic approximations to the
functions in C2 (Q) based on a. Specifically if x is a particular element
of C2 (Q) and we set aj,k=x(Sj,tk)' then the function x"((', '),A) is
the quadratic approximation of x based on the subdivision a.

DEFINITION 2.1. Let q be a given non-zero real number and let F(x)
be a functional defined on a subset of C2 (Q) containing all the quadratic
elements of C2 (Q). Let {an} be a sequence of subdivisions such that
norm l!an!l---tO, and let {An} be a sequence of complex numbers with
Re An>O such that An---t-iq. Then if the integral in the right of (2.2)
exists for all n and if the following limit exists and is independent of
the choice of the sequences of {an} and {An}, we say that the sequential
Yeh-Feynman integral with parameter q exists and is given by

(2.2)

where

S
Sy!,

F(x)dx

=lim r S(I.'" exp {-.3!!S [ (f-x".( (s, t), A)
n-CO ".'~' R 2 Q asot
F(x".((·, '),A»dA,

We note that f, m depend on a and fm is the number of subrectangles
in a. We empasize that the Lebesgue integral on the right of (2.2)
exists for all n.

Let
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exp{_l-t. f; [aj,k-aj-l,k-aj,k-l +aj_l,k_tJ2
}.

2 j=l k=l (Sj-Sj_l) (tk-tk-l)

(By the notation llml2 we mean (Jl )lm where Re .Jl>O). Thus in
terms of W, the sequential Yeh-Feynman integral defined in (2.2) can
be written

REMARK 2. 1. Since {O'n} and {In} were chosen arbitrarily and inde­
pendently in the definition, the single limit may also be expressed as a
double limit, thus,

(2.6)

where

f
Sy!

'F(x)dx= lim In,k
»,k-co

NOTATION. Let vEL2 (Q) and let 0' be any subdivision such that

(J : a=sO<sl<",<sl=b, c=tO<t1< ···<tm=d.

We define the averaged function v,,(s, t) for v on 0' by

Where there is a sequence for subdivisions 0'10 0'2, "', then 0',1, m, Si>

and tk will be replaced by O'n, ln, mn, Sn,b tn,k.
The following proposition is a well known result. We will state it

without proof [9,17J.

PROPOSITION 2. 1. Let Log+ (Q) be the class of all functions f on Q
such that lfllog+lfl is integrable, where log+lfl =log(lfIVl). Then
L 2 (Q) Clog+ (Q), and hence for any vEL2 (Q),
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1 fS+hfHklim hk v(p, q)dpdq=v(s, t)
h,k-O S t

for almost everywhere (s, t) EQ.

PROPOSITION 2.2. Let {an} be a sequence of subdivisions of Q such
that the norm Ilanll---+O, and let v(s, t) be integrable on Q such that the
function 1v Ilog+ I v I is integrable. Then for almost everywhere (s, t) EQ,
the sequence of averaged functions converges to the function;

(2.9) liro v ... (s, t) =V (s, t).
n-=

Proof. By Proposition 2. 1,

(2.10) 1 fS+hfHklim hk v(p, q)dpdq=v(s, t)
h,k-O S t

for a.e. (s, t)EQ. Let (s*, t*)E[a, b) X Cc, d) be a value of (s, t) where
(2. 10) holds, and hence

1 fS*+hfl*+kEm hk v(p, q)dpdq=v(s*, t*).
h,k-+O s* t*

Let £>0 be given. Choose 0>0 such that, when O<lhl<o and
O<lkl<o,

(2.11) If
S*+hfl*+k I
s* 1* v(p, q)dpdq- hk v(s*, t*) <£ 1hk I.

Choose N such that when n>N, Ilanll<o. For jn and kn such that
Sn,i.-l<S*<Sn,i., tn,k._l<t*<tn,k.' let us first put h=sn,i. -s* and
k=tn,k. -t* in (2.11), Thus

(2.11a) If::';' f::"'V(P, q)dpdq- (Sn,i. -s*) (tn,k. -t*)v(s*, t*)1

<el(s ·-s*)(t k-t*)1_ ",In n, n ..

Next put h=Sn,i. -S*, k=tn,k.-l-t*; h=Sn,i.-l-S*, k=tn,k. -t*;
h=Sn,i.-l-S*, k=tn,k.-l-t*, respectively. Thus

(2.11b) If::';' f::, ••_,v(P, q)dpdq- (Sn,i. -s*) (t*-tn,k._l)V(S*, t*)1

<el (Sn,i.-S*)(tn,k.-l-t*) I,
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(2.11c) If::'h_'S::"'v(P, q)dpdq- (S*-Sn,i.-l) (tn,k. -t*)v(s*, t*)1

<e I (Sn,i.-l- s*) (tn,k. - t*) I,
(2.11d) If::'i._. f:~,••_, v(p, q)dpdq- (S*-Sn,i.-l) (t*-tn,k.-l)V(S*, t*)/

<El (Sn,i.-l- S*) (tn,k.-l-t*) I.

Thus we have

Therefore we have established

Hm v".(s, t)=v(s*, t*).
n~oo

PROPOSITION 2.3. Let {an} be a sequence of subdivisions such that the
norm lIanll~O, and let vEL2(Q). Then

limf [v".(S,t)J2dsdt=f [v(s,t)J2dsdt.
n~oo Q Q

Proof. By Proposition 2.1 and 2.2, lim v".(s, t) =v(s, t) for a.e.
n-OO

(S, t)EQ, and by Fatou's lemma,

lim inff [v". (s, t) J2dsdt;;;; f eves, t) J2dsdt.
n-CO Q Q

Now

when (s, t)E[sn,i-I> Sn,i) X [tn,k-I> tn,k) , and by Schwarz ineqality,

Therefore we have
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(2.13)

(tn,k-tn,k-l)<~ ~fs,'j ft.,. [v(p, q)J 2dpdq
1-1 k-l s.,j_l t.,1_1

= f Q[V(S' t) J2dsdt.

Thus

lim supf [vd.(s, t)J2dsdt~f [v(s,t)J 2dsdt.
n-= Q Q

We have proved that the lim sup is less than or equal to the lim inf
and so the proposition is proved.

3. Existence theorem of the sequential Yeh-Feynman integral
on Sand S*

In this section, we prove the existence of the sequential Yeh-Feynman
integral for every element of each of our Banach algebras S,S*. And
also we present a theorem for interchanging summation and sequential
Yeh-Feynman integration.

THEOREM 3. 1. If FES* and q is a non-zero real number, then F is
sequentially Yeh-Feynman integrable and its sequential Yeh-Feynman
integral is equal to its analytic Yeh-Feynman integral.

Proof. Since FES*, there exists a measure p.EM such that

In particular, this equality holds for all quadradic functions X d •• Let {an}
and {An} be such that the norm lIanll~O, and Re An>O and An~-iq. Then

I n- fROM)' Wl.(an, A)F(xd.«·, .), A»dA

=f ) W l (an,A)f exp{if v(s,t)dxd (s,t)}dp.(v)dA.
H(l- n 11 L

2
Q R

By Fubini theorem and the properties of the P.W.Z. integral, we have
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dBdp.(v)

Thus we have

I n= f L2exp { - 2}n f Q[V"'.(S' t)J 2dsdt }d.uCv)

- f L2exp { ~i f /v(s, t)J
2
dsdt }d.u(v)
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as n-H)(), by Proposition 2.3 and the bounded convergence theorem.
Therefore we have proved that

Hm In=ISYlfF(X)dx= I exp{_l_. I eves, t)J 2dsdt }dp(v)
n-oo L. 2qi Cl

Since FES*CS, we have by proposition 3. 1 in [5J that the last
member above is equal to the analytic Yeh-Feynman integral of F.

CoROLLARY 1. If FES*, q is a non-real number, and F is given by
(1. 5) where pEM, then

(3.2) ISY/fF(X)dx= I L.exp { 2~i IIvm }dp(v) = I:~Y/fF(x)dx.

CoROLLARY 2. Ler FES. Then F is sequentially Yeh-Feynman inte­
grable and the first two members of (3. 2) are equal.

We also prove that the sequential Yeh-Feynman integration can be
interchanged with infinite summation;

co

THEOREM 3.2. Let FnES* for n=1,2, ..., and let E IlFnll<()().
n=l

Then FES*, where F(x)~:EFn(x), and
n=l

I
SY/, 00 SSY/,

F(x)dx n~ Fn(x)dx.

Proof. This follows from Proposition 3. 2 in [5J and Theorem 3. 1
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