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SEQUENTIAL YEH-FEYNMAN INTEGRALS OF CERTAIN
CLASSES OF FUNCTIONALS

Kun Soo Cuanc, Jeone Gvoo KiM, It Yoo ano Ki Seonc Chuot

1. Introduction

Let C,=C,(Q) be the Yeh-Wiener space (or two parameter Wiener
space) on Q=[a,b] X [c,d], that is, the space of continuous functions
z(s,t) on Q such that z(s,c)=x(a,t)=0. Let my be the Yeh-Wiener
measure on C,(Q).

A subset E of C,(Q) is said to be scale-invariant measurable provided
poE is Yeh-Wiener measurable for every p>0, and a scale-invariant
measurable set N is said to be scale-invariant null provided m,(pN)=0
for every p >0 ([6]). A property that holds except on a scale-invariant
null set is said to hold scale-invariant almost everywhere (s-a.e.). A
function F is said to be scale-invariant measurable provided F is defined
on a scale-invariant measurable set and F(p(-)) is Yeh-Wiener mea-
surable for every p>0. Two functionals F and G on C,(Q) are said
to be equal s-a.e. (F~G) if for each p>0, the equation F(px)=G(pzx)
holds for a.e. = in C,(Q).

Let F be a functional such that the Yeh-Wiener integral

J() = fczp(z—vzx) dz

exists for all real 1>>0. If there exists a function J*(2) analytic in the
half-plane Re >0 such that J*(2)=J(2) for all real 1>0, then we
define J*(2) to be the analytic Yeh-Wiener integral of F over C,(Q)
with parameter 2, and for Re >0, we write
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[T F@)dz=i+ ).

Let ¢ be a non-zero real parameter and let F be a functional whose
analytic Yeh-Wiener integral exists for Re 2>0. Then if the following
limit exists, we call it the analytic Yeh-Feynman integral of F over
C,(Q) with parameter ¢, and we write

anyf . . anyw,
J‘ F(z)dz= lim F(z)dz,
C, =—igd €,
Re 2>0
Let O=[a,b]x[c,d] and let a=s5,<5,<---<sy=b and c=4,<t;< -+
<tn=d determine a partition ¢ over Q. Let f(s,¢) be a real valued
function defined on Q. A function f(s,¢) is said to be of bounded
variation on Q(Ff&BV(Q)) provided the following three conditions hold;
(1) there exists a constant K such that for any partition ¢
:

(L1 jzl kZ_:llf(Sj, 2) = f(si—1, 8) — () ta1) + S (551, £4-1) | <K,

(ii) f(s,d) is a function of bounded variation in s,

(iii) f(b,t) is a function of bounded variation in £
And the total variation of f over Q, Var(f,Q), is defined to be the
supremum of the sums in (1.1) over all a.

Let f(s,t) be a real valued function on Q and let R=[a’, 0’} X [¢/,d’]
be a subrectangle of Q and 4(f)=f0,d)—f(a’,d)—f(, )+
Sf(a,¢’). A function f(s,t) is absolutely continuous on Q(fEAC(Q))
if the following two conditions are satisfied;

(i) given ¢>0, there exists § >0 suth that RZEJSI ()| <e

whenever S is the finite collection of pairwise non-overlapping subrec-
tangles of Q with >;m(R)<8, where m denotes Lebesgue measure on
Rz’ RES

(ii) the functions f(-,d) and f(b,+) are absolutely continuous
functions of a single variable on [¢,b] and [¢,d], respectively.

In recent papers [5,20], we treat some Banach algebras S,S, and S*
of functionals on Yeh-Wiener space which are a kind of stochastic
Fourier transform of complex Borel measures on L,(Q). Now we briefly
review them.
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Let D,=D,(Q) be the class of eiements z&=C,(Q) such that 2= AC(Q)
and 0%z (s,t) /850t=L,(Q). Let A =_# (L,(Q)) be the class of complex
measures of finite variation defined on <& (L,), the Borel measurable
subsets of L,(Q). If p=.#, we set |lpll=vary over L, (In this
paper, L, always means real L,. )

The functional F defined on a subset of C,(Q) that contains D,(Q)
is said to be an element of S=S(L,) if there exists a measure p=M
such that for z&D,(Q),

(1.2) F(x)=jLzexp[iI v(s, t)——L & x(s, 1) dsdt]dp('v).

The definition of the space of functionals S involves the Paley-Wiener-
Zygmund (P.W.Z.) integral. Next we give the definition of the P.W.Z.

integral, a simple type of stochastic integral, for functions of two
variables.

Let {¢.} be a complete orthonormal (C.O.N.) set of real valued
functions of bounded variation on Q. Let »&L,(Q) and

ua(6 ) =385, 1) | 22 0)6:(ps Q) dpda.

Then the P.W.Z. integral with two parameters is defined by

- {4} o~
f (s, )dz (s, )= f o(s, dz (s, £)
q Q
= h_‘rEJ‘ Qv,, (s, )dz (s, t)

The Riemann-Stieltjes integral j Q-a(s, t)dz(s,t) is then defined in the

usual way [10]. A paper of Yeh [19] has a nice discussion of the n-
dimensional Riemann-Stieltjes integral and some of its properties.
Actually Yeh doesn’t include conditions (ii) and (iii) as part of definition
of bounded variation. Of course all of the results he obtains concerning
the Riemann-Stieltjes integral are true in our more restrictive setting.
Let S=S(L,) be the space of functionals F expressible in the form

(1.3) F(z) = f expli f 205, 0dz (5,0} dp(o)

for s-a.e. z in C,, where p=M,
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If F(z)=G(z) for s-a.e. z in C,(Q) and for every z in D,(Q), we
shall write F=G.

From Theorem 4 of [16], we have that if v&L,(Q) and z&D,(Q),
then

(1.49) J“()(s t)dx(s, D)= f v(s, ) y.g(;tt) dsdt.

Thus if v&L,(Q) and {¢.}, {¢n} are two C.O.N. sequences of BV(Q),
then for z&D,(Q),

f L G%P (i A f 7 (s, )dz (s, )} dp(v)
=~ fL exp (i A f@v (s, )dzx (s, )} dp(v).

We now introduce the class of functionals S* Let S*=S*(L,) be the
space of functionals F expressible in the form

(1.5) F@) = [ expli | 065, 0de(s, 0176
for s-a.e. z=C,(Q) and for every z&D,(Q), where p=M.
2. Preliminaries and some results

In this section, we extend the concept of the sequential Feynman
integral to that of the sequential Yeh-Feynman integral and prove the
L, convergence of averaged functions.

NOTATION, Let a subdivision ¢ of Q be given;

01 a=505,r<s=b, c=1t;< ++<bn=d.

Let z,=z,((s,t),A) be a quadratic function in C,(Q) based on a
subdivision ¢ and the matrix of real numbers A= {q;,,}, and defined by

N RN R Rl . N P
@2.1) z.((s,8), A)= G55 o=t (s—si—1) E—tr-y)

+ Aj k-1~ Aj-1,k—1 (s $j- 1)+ A1, Aj—1,k—1 (t— tiot)
Se— Sp-1 ti—Ep—

+ajy,51
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where s;_,<s<[s;, ts_,<t<lts, a;,0=a0,s=0 for j=1,--,1, k=1, -, m.

As A= {a;} ranges over all lm-dimensional real space, the quadratic
functions z,((-, +), A) range over all quadratic approximations to the
functions in C,(Q) based on ¢. Specifically if = is a particular element
of C,(Q) and we set a;,=x(s;, &), then the function z,((:,-),A) is
the quadratic approximation of x based on the subdivision o.

DEFINITION 2.1. Let ¢ be a given non-zero real number and let F(x)
be a functional defined on a subset of C,(Q) containing all the quadratic
elements of C,(Q). Let {s.] be a sequence of subdivisions such that
norm |jo,}l—0, and let {i,} be a sequence of complex numbers with
Re 2,0 such that 1,——iq. Then if the integral in the right of (2.2)
exists for all » and if the following limit exists and is independent of
the choice of the sequences of {s,} and {1,}, we say that the sequential
Yeh-Feynman integral with parameter ¢ exists and is given by

2.2) f e p(z)dz

=£i_{£ ro, J‘ s exp{—jf f Q[ oz, ((s, 1), A) ]Za’sdt}

2 050t
F(z,,((+,-),4))dA,

where

2 imzs72_ I m —1/2
(2.3) Teoya= (7) [1;11 kI=-11 (si—sj-) (ti—te-y) ]

and A=(4,, -, An), As={(ay,s =, a1 for k=1, -, m.

We note that I,m depend on ¢ and Im is the number of subrectangles
in 0. We empasize that the Lebesgue integral on the right of (2.2)
exists for all =

Let

@.49 Wi(o, A) =7.,2 exp [ — —% f Q[L‘?-g(a‘?i]zdsdt

~ ()"t A =510 = 2001772
27 jergm s TV AR
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i & laje—aj_1,—aje—1+a; 1,511
exp[———Z 2 bt mLE = }
2 ==t (si—si-1) (Be—ta—y)

(By the notation 2™/2 we mean (4/ 2)™ where Re. 2>0). Thus in
terms of W, the sequential Yeh-Feynman integral defined in (2.2) can
be written

syf, .
@5 [T F@de=lm| ., Wil HF(., (), H)dA.
REMARK 2.1. Since {0.} and {2,} were chosen arbitrarily and inde-

pendently in the definition, the single limit may also be expressed as a
double limit, thus,

(2.6) [P@)dz= lim L,
LR el
where
@D L= Walon DF(@a(C, ), A)dA.

NOTATION., Let v&=L,(Q) and let ¢ be any subdivision such that
[+ 24 a=30<51<"'<51=b, C=to<t1<"‘<tm=d.

We define the averaged function v,(s,) for v on ¢ by

1 s; i,
J~(si'_si—1) (Ee—ta-y) »[’i—lftk—lv(P’ q)dpdq’
(2.8) v, (s,)= when (s, £) E[sj_y, 57) X [tsy, tx) Sor
j=1’ oeey l’ k=1, ces, M.
0, when s=b or t=d.

Where there is a sequence for subdivisions g, a3, -, then o,l,m,s;,
and # will be replaced by 6., ln, ma, Su iy tays

The following proposition is a well known result. We will state it
without proof [9, 17].

PROPOSITION 2.1. Let Log*(Q) be the class of all functions f on Q
such that |f|log*|f| is integrable, where log*|f|=log(|f|\/1). Then
L,(Q)Clog*(Q), and hence for any v&=L,(Q),
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st+h Ltk
lim 2[00, Qdpdg=v(s, 0

h’k"'O
for almost everywhere (s,t)EQ.

PROPOSITION 2.2. Let {6.} be a sequence of subdivisions of Q such
that the norm ||o.l|—0, and let v(s,t) be integrable on Q such that the
Sfunction |v|log™|v| is integrable. Then for almost everywhere (s, t)=Q,
the sequence of averaged functions converges fo the function;

2.9 lgg v,,(s, ) =v(s, £).

Proof. By Proposition 2.1,

. 1 sth (Cttk
@10 Jim g [ [0 adsda=v(s 0

0

for a.e. (s5,6)=Q. Let (s*, t*)&[a,b) X[c,d) be a value of (s, t) where
(2.10) holds, and hence

. st+h P HE4R
lim 7 [ [ v ydpda—v (s, ).

k=0
Let ¢>0 be given. Choose >0 such that, when 0<|2|<6 and
0] %] <5,
stHh (Rt
(2.11) US* ft* v(p, @)dpdg—hk v(s*, t*)| <c|hk|.

Choose N such that when z >N, l.l|<d8. For j, and %, such that
Sn, a1t <S¥ S jus bnypa1 ¥ <tus, let us first put h=s,; —s* and
k=t,;,—t* in (2.11), Thus

@118) |[ 7[00, dpda— (50,1 5) (tap = )0 (5*, 29)|
el (sny5,—5*) (Enya,— %) |.
Next put h=s, ;,—s* k=tns,—1—t*; h=su;1—5% k=t —1t%;

h=s,;,-1—s%* k=t s,1—t* respectively. Thus

LS t*
@1b) ([T v, @)dpdg— (50,1.=5%) (¢ = o0 D0 (s, )|
e (Sn,i,._s*) (tn,k,—l—t*) B
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(2. 11c) U :in_lj‘::""v(p, Q) dpdg— (s*—su,;._1) (bn,e.— )0 (s, t*)l
<e| (n,0-1—5%) (s, — 9 |,
Cud [ 7 00 0dpda— (=) (Pt )95 )
<e| (snyi,-1— %) (tn, 0,1 — %) |.

Thus we have

1 Susin taskn -
om0 v dsda—vn ) | <.
Ryis Rytn— nyky Ry Ry Sayin—1 Ry kn—1

Therefore we have established

}LIE v, (s, £) =v(s*, t¥).

PROPOSITION 2.3. Let {6, be a sequence of subdivisions such that the
norm |lo.ll—0, and let v=L,(Q). Then

1,&‘3 f Q[‘v,_ (s, £) 12dsdt= j Q[‘v (s, 1) 12dsds.

Proof. By Proposition 2.1 and 2.2, Ii_{n v,,(s, ) =v(s, &) for a.e.

(s,£)=Q, and by Fatou’s lemma,

1@me%@JWWgL@@m%ﬁ

Now

1 Susi It-;b
e (S5 £) = , dpd
v ‘(S ) (Sn,j"‘sn,j—l) (tn,k_tn,k-l) J.’-ai—l ‘-sk—lv(P q) 224

when (s, £) &E[sa,j—1, S2,7) X [fa,5-1 £a,2), and by Schwarz ineqality,
Snu’ t::lx 2
@12) [[ [ v(p, q)dpdd]

Sesj ook
<[ 7 [o(e, @) Tdpdg(suyi=so,io0) (ugp—tnyacr).

Therefore we have
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@13) [ [, 07 dsde

& 5 [ S e 0dsda TG

=l k=1 (sn,j— s,.,,-_l) (tn,lz —tn,k—l)

la  ma (5,,; LY
i —tna-)= 5[ [ [0(p, ) 1dpdg

i=1 k=1

- f oG 0 Jdsd
Thus
lim supf [v., (s, ©) ]stdtgf [v(s, £) 2dsdL.
no Q Q
We have proved that the limsup is less than or equal to the lim inf
and so the proposition is proved.

3. Existence theorem of the sequential Yeh-Feynman integral
on S and S*

In this section, we prove the existence of the sequential Yeh-Feynman
integral for every element of each of our Banach algebras §,S*. And
also we present a theorem for interchanging summation and sequential
Yeh-Feynman integration.

THEOREM 3. 1. If F&S* and q is a non-zero real number, then F is
sequentially Yeh-Feynman integrable and its sequential Yeh-Feynman
integral is equal to its analytic Yeh-Feynman integral.

Proof. Since F&S*, there exists a measure y=M such that

(3.1) F(x);J‘Lzexp {ifo-o(s, Hdz(s, t)]dy('o),

In particular, this equality holds for all quadradic functions z,,. Let {s,}
and {1.} be such that the norm ||s,||—0, and Re 2, >0 and 2,——ig. Then

I= [ Wi DF (@ (5 ), 4))dA
= [ o Wirlon ) [ expli | 0(s, 02,05, ) du(w)dA.

By Fubini theorem and the properties of the P.W.Z. integral, we have
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at ] azx'f.((s’ t)’ A)
In f L, f pU=)n W, (ox, A)exp s _[ o7 (s,2) P dsdt}dAdp.(v)

A S o [aj a0~ @i p—1taj1,5-11% ]
=7, expi{——2—
7 = fqu RU=)» p{ 2 jgl kzzl (Sn,j_su,j—l) (tn,k—‘tn,lz—l)

exp [zi ZV‘_‘,I:'::_ ft::_lv(s, t)

j=1k=1

[a] Qi1 1 T A1 ke ljd }
e 2 sdti dAdp(v)
(5",1 Sn, j— 1) (tn BT tn k—1 #

Ag b= 7a bj,kz ]
T Tows f fﬂ(") ex p{ 2 ,2:1 kZl (Sny =17 Sn,j=1) (bnyt—tn 1)

Iy ms b,
ex v(s, t L dsdt
P 121 kzl:jsun_l-[ tag k1 (S ) ( n,J sn,] 1) (tn,k——tn,h—l) * }

dBdy(v)

where B={b;,} which b;,=a;:—a; 1,s—a;i_;+a;_1,s_;- Thus

Ju= f f IZ gex { Anbj i
LAl (Y N L,J rwaih S p Z(Sn,j—sn,j_l) (ta,p—tn, 5—1)
- Suyi sy k b'
+ f J‘ » t d dt ik dB
l[ Snyj—1 tn’l—x'v(s ) . ] (Su,f—sn,i-—l) (tn,k—'tn,k—l) } d{i('(])
L n 7y i— tnp—En. b 172
=']’,-,3"J‘ _IT TI-[ 275(3 yi T Snyj l)( N A Sk 1) :|

j=1 k=1 zn

[js,,,_lf i vl t)dmﬂ }d#(v)

2/2 (s”,l 571’] 1) (tn,k tn,k 1)

=y LI 2
-—f exp{ J ”,,. fs,,_,f:,,,_,v(s’t)JSdt] }d#(v)’

=1 22u(Sn, j— Su, j—1) (bn, 6 —Eny5—1)
=fL expi— (s, t)]zdsdt}dy(v).
Thus we have

exp{ -

Jn=szexp{ 22 (s, t)]zdsdt}dp.(v)

- Lzexp{wfatv(s, 1) Jdsdt | du(o)
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as #—co, by Proposition 2.3 and the bounded convergence theorem.
Therefore we have proved that

1132 Ju= I syf'F (z)dz= J‘ L CXP { _Zqu f Q['v (s, £) ] ?dsdt } du(v)

Since F&S*CS, we have by proposition 3.1 in [5] that the last
member above is equal to the analytic Yeh-Feynman integral of F.

COROLLARY 1. If FES*, g is a non-real number, and F is given by
(1.5) where p=M, then

3.2) Isyf'F(x)dx= szexp{ Z;i |z} } dp(v)= f::yf'F(x)dx.

COROLLARY 2. Ler FES., Then F is sequentially Yeh-Feynman inte-
grable and the first two members of (3.2) are equal.

We also prove that the sequential Yeh-Feynman integration can be
interchanged with infinite summation:

THEOREM 3.2. Let F,&S* for n=1,2, -, and let 3, ||F.ll<co.
n=]
Then FES*, where F(x)_;iF,.(a:), and
n=—i

J syf"F (z)dzx =n§ f syf'F 2(z)dz,

Proof. This follows from Proposition 3.2 in [5] and Theorem 3.1
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