• Title/Summary/Keyword: Ferritin

Search Result 358, Processing Time 0.024 seconds

Efficient Purification Of Fused Ferritin[$F_{H}+F_{L}$] using Silica Powder and Gel Filtration Chromatography (실리카 분말과 젤 여과 크로마토그래피를 이용한 효과적인 융합 페리틴의 정제)

  • 허윤석;김인호
    • KSBB Journal
    • /
    • v.17 no.4
    • /
    • pp.365-369
    • /
    • 2002
  • An iron-storage protein, ferritin is a spherical shell consisting of 24 H-and L-chain subunits. Soluble form of fused($F_{H}+F_{L}$ chain) ferritin was separated from disrupted recombinant E. coii cells, followed by silica powder adsorption. Ferritin was recovered from silica-poweder by distilled water, which was applied to gel filtration chromatography(GFC). Collected ferritin fractions from the GFC were assayed via iron-uptake and its molecular weight determined using GF-HPLC. Fused ferritin showed a higher activity than the M- or L- chain ferritin by two times.

Improved Coexpression and Multiassembly Properties of Recombinant Human Ferritin Subunits in Escherichia coli

  • Lee, Jung-Lim;Levin, Robert E.;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.5
    • /
    • pp.926-932
    • /
    • 2008
  • Human heavy chain (H-) and light chain (L-) ferritins were amplified from a human cDNA library. Each ferritin gene was inserted downstream of the T7 promoter of bacterial expression vectors, and two types of coexpression vectors were constructed. The expression levels of recombinant ferritins ranged about 26-36% of whole-cell protein. H-ferritin exhibited a lower expression ratio compared with L-ferritin, by a coexpression system. However, the coexpression of HL-ferritins was significantly increased above the expression ratio of H-ferritin by cultivation without IPTG induction overnight. Purified recombinant H-, L-, HL-, and LH-ferritins were shown to be homo- and heteropolymeric high molecular complexes and it was indicated that their assembled subunits would be able to work functionally in the cell. Thus, these results indicate an improvement in the expression strategy of H-ferritin for heteropolymeric production and studies of ferritin assembly in Escherichia coli.

Severe Hemorrhage Induced Expressions of Ferritin and Heme Oxygenase-1 In Leukocytes (출혈로 인한 폐 염증세포에서의 ferritin과 heme oxygenase-1의 발현)

  • Kwon, Jung-Wan;Park, Yoon-Yub
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.878-885
    • /
    • 2009
  • Serum ferritin levels are elevated in subjects with acute lung injury (ALI), and abnormalities in plasma and lung iron chemistry have also been demonstrated in ALI and acute respiratory distress syndrome (ARDS). Stress-inducible heme oxygenase-1 (HO-1), as well as ferritin, had shown anti-inflammatory actions. Biomarkers for early detection in patients who are likely to develop ARDS would give several therapeutic chances to the patients. In order to verify the predictability in severe hemorrhage-induced ALI in rats, we measured serum ferritin and HO-1 concentrations before and after hemorrhage. Severe hemorrhages significantly increased the number of leukocytes in bronchoalveolar lavage (BAL) fluid and lung tissue myeloperoxidase activity. Both serum ferritin and HO-1 levels increased following hemorrhage, but ferritin levels were elevated earlier than HO-1. In BAL cell immunohistochemical studies, ferritin and HO-1 expressions increased after hemorrhage and localized in the cytoplasm of leukocytes. These findings suggest that inflammatory leukocytes in BAL fluid can secrete ferritin and HO-1, and serum ferritin levels might be more valid factor in predicting ARDS than HO-1 levels in hemorrhage-induced ALI.

Hemoglobin, Hematocrit and Serum Ferritin as Markers of Iron Status (빈혈판정 지표로서의 헤모글로빈, 헤마토크릿 및 혈청 페리틴)

  • 정해랑;문현경;송범호;김미경
    • Journal of Nutrition and Health
    • /
    • v.24 no.5
    • /
    • pp.450-457
    • /
    • 1991
  • The iron status of 57 female college students was evaluated by measurements of hemoglobinCHb). hematocritCHct) and serum ferritin(Ferritin). Mean values for Hb, Hct and Ferritin were $13.9\pm$ 0.96g/dl, $41.4\pm$ 2.85% and $20.7\pm$ l5.5ng/mL respectively. Ferritin as well as Hb. Hct were not statistically different from normal distribution. although ferritin were skewed to the right. The prevalence of anemia defined by Hb < 12g/dI. Hct ~36 % and Ferritin <12ng/ml were found to be 5.3, 10.3 and 36.8%, respectively. By using Hb as a screening tool at a cutoff point of 12g/dI. 2.8% of healthy subjects will be incorrectly classified as anemic and 90.5 % of anemic as healthy. Sensitivity and specificity were calculated at various cutoff points of Hb and Hct. The estimates of sensitivity and specificity allow Hb 14.0g/dl as cutoff point for good predictor of anemia.

  • PDF

Purification and Characterization of Phytoferritin

  • Oh, Suk-Heung;Cho, Sung-Woo;Kwon, Tae-Ho;Yang, Moon-Sik
    • BMB Reports
    • /
    • v.29 no.6
    • /
    • pp.540-544
    • /
    • 1996
  • Ferritins from germinated pumpkin seeds were isolated by ammonium sulfate precipitation (0.55 saturation), ion-exchange chromatography on DEAE-cellulose, and gel filtration chromatographies on Sephacryl S-300 and Sephadex G-100. Pumpkin ferritin contains less iron than soybean ferritin. Pumpkin ferritin cross-reacted with anti-soybean ferritin antiserum made in rabbit, and showed two distinct antibody reactive bands, both of equal intensity. The pumpkin ferritins corresponding to the two bands were separable by centrifugation in a sucrose gradient (20~50%). The molecular weights of the native pumpkin ferritins based on the estimation of sucrose gradient centrifugation, gel filtration on Sephacryl S-300 and non-denaturing polyacrylamide gel electrophoresis appeared to be: 530~580 KD (the large molecular weight pumpkin ferritin) and 330-360 KD (the small molecular weight pumpkin ferritin) The large molecular weight pumpkin ferritin contains less iron. Both pumpkin ferritins cross-reacted with anti-soybean ferritin antibody with a spur formation suggesting partial antigenic recognition.

  • PDF

Cooperative Activity of Subunits of Human Ferritin Heteropolymers in Escherichia coli

  • Lee, Jung;Seo, Hyang-Yun;Jeon, Eun-Soon;Park, Ok-Soon;Lee, Kang-Min;Park, Chung-Ung;Kim, Kyung-Suk
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.365-370
    • /
    • 2001
  • We constructed a comparative expression system in order to produce recombinant human ferritin homo- and heteropolymers in Escherichia coli. Human ferritin H-(hfH) and L-chain (hfL) genes were expressed without amino acid changes under the control of a tac promoter. Ferritin heteropolymers of varying subunit composition were also produced by combining two different expression systems, a bicistronic expression system and a coplasmid expression system. As a result, recombinant H-chain ferritin and ferritin heteropolymers were catalytically active in forming iron core in vivo. In particular, the ferritin heteropolymer that is composed of 7% H-subunit and 93% L-subunit was capable of forming an iron core of the protein, while the L-chain ferritin homopolymer was inactive in vivo. This result indicates that the two H-subunits (i.e., 7% H-subunit content) are important to keep ferritin active in the cells. In addition, human ferritins were identified as the major iron binding proteins in the transformed cells. Also, the amount of iron bound to the recombinant ferritins was proportional to the H-subunit content in ferritin heteropolymers in vivo.

  • PDF

Secretion of Ferritin Protein of Periserrula leucophyryna in Bacillus subtilis and Its Feed Efficiency (고초균에서 흰이빨참갯지렁이 페리틴 단백질의 분비 및 사료 효율성)

  • Choi, Jang Won
    • KSBB Journal
    • /
    • v.31 no.2
    • /
    • pp.105-112
    • /
    • 2016
  • Ferritin is known to regulate iron metabolism and maintain iron in a variety of the eukaryotic organisms. The region encoding the mature ferritin (0.47 kb, H-type) of Periserrula leucophryna was amplified using the designed primers including restriction enzyme site and termination codon and subcloned in frame to the pRBAS secretion vector containing the signal sequence, RBS, and promoter of amylase gene (E. coli-Bacillus shuttle vector), resulting in recombinant pRBAS-PLF vector. Recombinant ferritin (18 kDa) was correctly processed and secreted from Bacillus subtilis LKS strain harboring the pRBAS-PLF vector and quantitatively analyzed by SDS-PAGE and western blot, respectively. Secretion of the ferritin was optimized by culture conditions (host, medium, temperature, nitrogen source) in 3 L batch culture and 5 L jar fermenter. Finally. the ferritin was largely produced using 50 L fermenter as the following conditions; at $30^{\circ}C$, 150 rpm, 1 vvm in Bacillus subtilis LKS using PY medium. The secreted ferritin was maximally measured (approximately 177.6 ug/ml) when the cell density reached to 14.4 at $OD_{600}$ (20 h incubation). The iron binding activity was confirmed by Perls' staining in 7.5% non-denaturing gel, indicating that the multimeric ferritin (composed of 24 subunits) was formed in the culture broth after secretion. Biologically, the culture broth and powder type containing ferritin were tested for possibility as feed additive in chicken broiler. As a result, the ferritin stimulated the growth of chick broil and improved feed efficiency and production index.

Oxidative Damage of DNA Induced by Ferritin and Hydrogen Peroxide

  • Kang, Jung-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2873-2876
    • /
    • 2010
  • Excess free iron generates oxidative stress that may contribute to the pathogenesis of various causes of neurodegenerative diseases. Previous studies have shown that one of the primary causes of increased brain iron may be the release of excess iron from intracellular iron storage molecules. In this study, we attempted to characterize the oxidative damage of DNA induced by the reaction of ferritin with $H_2O_2$. When DNA was incubated with ferritin and $H_2O_2$, DNA strand breakage increased in a time-dependent manner. Hydroxyl radical scavengers strongly inhibited the ferritin/$H_2O_2$ system-induced DNA cleavage. We investigated the generation of hydroxyl radical in the reaction of ferritin with $H_2O_2$ using a chromogen, 2,2'-azinobis-(2-ethylbenzthiazoline-6-sulfonate) (ABTS), which reacted with ${\cdot}OH$ to form $ABTS^{+\cdot}$. The initial rate of $ABTS^{+\cdot}$ formation increased as a function of incubation time. These results suggest that DNA strand breakage is mediated in the reaction of ferritin with $H_2O_2$ via the generation of hydroxyl radicals. The iron-specific chelator, deferoxamine, also inhibited DNA cleavage. Spectrophotometric study using a color reagent showed that the release of iron from $H_2O_2$-treated ferritin increased in a time-dependent manner. Ferritin enhanced mutation of the lacZ' gene in the presence of $H_2O_2$ when measured as a loss of $\alpha$-complementation. These results indicate that ferritin/$H_2O_2$ system-mediated DNA cleavage and mutation may be attributable to hydroxyl radical generation via a Fenton-like reaction of free iron ions released from oxidatively damaged ferritin.

Protective effects of carnosine and homocarnosine on ferritin and hydrogen peroxide-mediated DNA damage

  • Kang, Jung-Hoon
    • BMB Reports
    • /
    • v.43 no.10
    • /
    • pp.683-687
    • /
    • 2010
  • Previous studies have shown that one of the primary causes of increased iron content in the brain may be the release of excess iron from intracellular iron storage molecules such as ferritin. Free iron generates ROS that cause oxidative cell damage. Carnosine and related compounds such as endogenous histidine dipetides have antioxidant activities. We have investigated the protective effects of carnosine and homocarnosine against oxidative damage of DNA induced by reaction of ferritin with $H_2O_2$. The results show that carnosine and homocarnosine prevented ferritin/$H_2O_2$-mediated DNA strand breakage. These compounds effectively inhibited ferritin/$H_2O_2$-mediated hydroxyl radical generation and decreased the mutagenicity of DNA induced by the ferritin/$H_2O_2$ reaction. Our results suggest that carnosine and related compounds might have antioxidant effects on DNA under pathophysiological conditions leading to degenerative damage such as neurodegenerative disorders.

Identification of Ferritin Using Immunodiffusion Methods (면역확산법을 이용한 페리친의 확인)

  • Ha, Kwang-Won;Cho, Jung-Hee;Kim, Do-Hoon;Kim, Young-Lim;Kim, Hong-Jin;Shim, Young-Hun
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.3 s.130
    • /
    • pp.257-261
    • /
    • 2002
  • Each ferritin molecule consists of light subunit 19,000 dalton and heavy subunit 22,000 dalton. Twenty-four protein subunit about $440,000{\sim}500,000$ dalton apoferritin which contained $20{\sim}30%$ Fe as ferric hydroxyphosphate polymer form. Horse spleen-derived ferritin consists of 90% light subunit. These genetic characteristics of ferritin preparations were able to determine by cellulose acetate electrophoresis, but these ferritin preparations contained other components to be disturbed during refining, extraction and making finish products and have difficulties in deciding to be just. So, this study was performed to establish the scientific method for determine the quality of ferritin preparations with immunodiffusion methods which has high specificity between heterogeneous proteins.