Improved Coexpression and Multiassembly Properties of Recombinant Human Ferritin Subunits in Escherichia coli

  • Lee, Jung-Lim (Department of Food Science, Massachusetts Agricultural Experiment Station, University of Massachusetts) ;
  • Levin, Robert E. (Department of Food Science, Massachusetts Agricultural Experiment Station, University of Massachusetts) ;
  • Kim, Hae-Yeong (Institute of Life Sciences and Resources, and Graduate School of Biotechnology, Kyung Hee University)
  • Published : 2008.05.31

Abstract

Human heavy chain (H-) and light chain (L-) ferritins were amplified from a human cDNA library. Each ferritin gene was inserted downstream of the T7 promoter of bacterial expression vectors, and two types of coexpression vectors were constructed. The expression levels of recombinant ferritins ranged about 26-36% of whole-cell protein. H-ferritin exhibited a lower expression ratio compared with L-ferritin, by a coexpression system. However, the coexpression of HL-ferritins was significantly increased above the expression ratio of H-ferritin by cultivation without IPTG induction overnight. Purified recombinant H-, L-, HL-, and LH-ferritins were shown to be homo- and heteropolymeric high molecular complexes and it was indicated that their assembled subunits would be able to work functionally in the cell. Thus, these results indicate an improvement in the expression strategy of H-ferritin for heteropolymeric production and studies of ferritin assembly in Escherichia coli.

Keywords

References

  1. Akhayat, O., A. A. Infante, D. Infante, C. Martins, M. F. Grossi, and K. Scherrer. 1987. A new type of prosome-like particle, composed of small cytoplasmic RNA and multimers of a 21-kDa protein, inhibits protein synthesis in vitro. Eur. J. Biochem. 170: 23-33 https://doi.org/10.1111/j.1432-1033.1987.tb13663.x
  2. Andrews, P. 1964. Estimation of the molecular weights of proteins by Sephadex gel-filtration. Biochem. J. 91: 222-233 https://doi.org/10.1042/bj0910222
  3. Beaumont, C., S. V. Torti, F. M. Torti, and W. H. Massover. 1996. Novel properties of L-type polypeptide subunits in mouse ferritin molecules. J. Biol. Chem. 271: 7923-7926 https://doi.org/10.1074/jbc.271.14.7923
  4. Coux, O., L. Camoin, H. G. Nothwang, F. Bey, I. P. Silva, G. Keith, A. D. Strosberg, and K. Scherrer. 1992. The protein of M(r) 21,000 constituting the prosome-like particle of duck erythroblasts is homologous to apoferritin. Eur. J. Biochem. 207: 823-832 https://doi.org/10.1111/j.1432-1033.1992.tb17113.x
  5. Ford, G. C., P. M. Harrison, D. W. Rice, J. M. Smith, A. Treffry, J. L. White, and J. Yariv. 1984. Ferritin: Design and formation of an iron-storage molecule. Philos. Trans. R. Soc. Lond. B Biol. Sci. 304: 551-565 https://doi.org/10.1098/rstb.1984.0046
  6. Grace, J. E., M. E. Van Eden, and S. D. Aust. 2000. Production of recombinant human apoferritin heteromers. Arch. Biochem. Biophys. 384: 116-122 https://doi.org/10.1006/abbi.2000.2068
  7. Grossman, T. H., E. S. Kawasaki, S. R. Punreddy, and M. S. Osburne. 1998. Spontaneous cAMP-dependent derepression of gene expression in stationary phase plays a role in recombinant expression instability. Gene 209: 95-103 https://doi.org/10.1016/S0378-1119(98)00020-1
  8. Guo, J. H., M. Abedi, and S. D. Aust. 1996. Expression and loading of recombinant heavy and light chain homopolymers of rat liver ferritin. Arch. Biochem. Biophys. 335: 197-204 https://doi.org/10.1006/abbi.1996.0498
  9. Guo, J. H., S. H. Juan, and S. D. Aust. 1998. Suppression of cell growth by heavy chain ferritin. Biochem. Biophys. Res. Commun. 242: 39-45 https://doi.org/10.1006/bbrc.1997.7910
  10. Harrison, P. M. and P. Arosio. 1996. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275: 161-203 https://doi.org/10.1016/0005-2728(96)00022-9
  11. Jeong, E. J., K. S. Park, S. Y. Yi, H. J. Kang, S. J. Chung, C. S. Lee, J. W. Chung, D. W. Seol, B. H. Chung, and M. I. Kim. 2007. Stress-governed expression and purification of human type II hexokinase in Escherichia coli. J. Microbiol. Biotechnol. 17: 638-643
  12. Jeoung, D. and H. Y. Kim. 2001. Cloning and sequence analysis of cDNA for heavy chain ferritin from the Canis familiaris. DNA Seq. 12: 401-406 https://doi.org/10.3109/10425170109084465
  13. Kim, Y. J., H. S. Lee, S. S. Bae, J. H. Jeon, J. K. Lim, Y. Cho, K. H. Nam, S. G. Kang, S. J. Kim, S. T. Kwon, and J. H. Lee. 2007. Cloning, purification, and characterization of a new DNA polymerase from a hyperthermophilic archaeon, Thermococcus sp. NA1. J. Microbiol. Biotechnol. 17: 1090-1097
  14. Kuo, J. T., Y. J. Chang, and C. P. Tseng. 2003. Growth rate regulation of lac operon expression in Escherichia coli is cyclic AMP dependent. FEBS Lett. 553: 397-402 https://doi.org/10.1016/S0014-5793(03)01071-8
  15. Lee, J. L., H. S. Song, H. J. Kim, J. H. Park, D. K. Chung, C. S. Park, D. Jeoung, and H. Y. Kim. 2003. Functional expression and production of human H-ferritin in Pichia pastoris. Biotechnol. Lett. 25: 1019-1023 https://doi.org/10.1023/A:1024193104858
  16. Lee, J. L., S. N. Yang, C. S. Park, D. Jeoung, and H. Y. Kim. 2004. Purification and its glycosylation pattern of recombinant L-ferritin in Pichia pastoris. J. Microbiol. Biotechnol. 14: 68-73
  17. Lee, J. L., C. S. Park, and H. Y. Kim. 2007. Functional assembly of recombinant human ferritin subunits in Pichia pastoris. J. Microbiol. Biotechnol. 17: 1695-1699
  18. Leong, L. M., B. H. Tan, and K. K. Ho. 1992. A specific stain for the detection of nonheme iron proteins in polyacrylamide gels. Anal. Biochem. 207: 317-320 https://doi.org/10.1016/0003-2697(92)90018-3
  19. Levi, S., A. Luzzago, G. Cesareni, A. Cozzi, F. Franceschinelli, A. Albertini, and P. Arosio. 1988. Mechanism of ferritin iron uptake: Activity of the H-chain and deletion mapping of the ferro-oxidase site. A study of iron uptake and ferro-oxidase activity of human liver, recombinant H-chain ferritins, and of two H-chain deletion mutants. J. Biol. Chem. 263: 18086-18092
  20. Levi, S., J. Salfeld, F. Franceschinelli, A. Cozzi, M. H. Dorner, and P. Arosio. 1989. Expression and structural and functional properties of human ferritin L-chain from Escherichia coli. Biochemistry 28: 5179-5184 https://doi.org/10.1021/bi00438a040
  21. Levi, S., P. Santambrogio, A. Cozzi, E. Rovida, B. Corsi, E. Tamborini, S. Spada, A. Albertini, and P. Arosio. 1994. The role of the L-chain in ferritin iron incorporation. Studies of homo and heteropolymers. J. Mol. Biol. 238: 649-654 https://doi.org/10.1006/jmbi.1994.1325
  22. Levi, S., S. J. Yewdall, P. M. Harrison, P. Santambrogio, A. Cozzi, E. Rovida, A. Albertini, and P. Arosio. 1992. Evidences of H- and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin. Biochem. J. 288: 591-596 https://doi.org/10.1042/bj2880591
  23. Lieu, H. Y., H. S. Song, S. N. Yang, J. H. Kim, H. J. Kim, Y. D. Park, C. S. Park, and H. Y. Kim. 2006. Identification of proteins affected by iron in Saccharomyces cerevisiae using proteome analysis. J. Microbiol. Biotechnol. 16: 946-951
  24. Orino, K., K. Eguchi, T. Nakayama, S. Yamamoto, and K. Watanabe. 1997. Sequencing of cDNA clones that encode bovine ferritin H and L chains. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 118: 667-673 https://doi.org/10.1016/S0305-0491(97)00277-0
  25. Santambrogio, P., A. Cozzi, S. Levi, E. Rovida, F. Magni, A. Albertini, and P. Arosio. 2000. Functional and immunological analysis of recombinant mouse H- and L-ferritins from Escherichia coli. Protein Expr. Purif. 19: 212-218 https://doi.org/10.1006/prep.2000.1212
  26. Santambrogio, P., S. Levi, A. Cozzi, E. Rovida, A. Albertini, and P. Arosio. 1993. Production and characterization of recombinant heteropolymers of human ferritin H and L chains. J. Biol. Chem. 268: 12744-12748
  27. Takeda, S., M. Yamaki, S. Ebina, and K. Nagayama. 1995. Sitespecific reactivities of cysteine residues in horse L-apoferritin. J. Biochem. (Tokyo) 117: 267-270 https://doi.org/10.1093/jb/117.2.267
  28. Wade, V. J., S. Levi, P. Arosio, A. Treffry, P. M. Harrison, and S. Mann. 1991. Influence of site-directed modifications on the formation of iron cores in ferritin. J. Mol. Biol. 221: 1443-1452 https://doi.org/10.1016/0022-2836(91)90944-2
  29. Wong, K. K., H. Colfen, N. T. Whilton, T. Douglas, and S. Mann. 1999. Synthesis and characterization of hydrophobic ferritin proteins. J. Inorg. Biochem. 76: 187-195 https://doi.org/10.1016/S0162-0134(99)00114-2
  30. Worwood, M. 1990. Ferritin. Blood Rev. 4: 259-269 https://doi.org/10.1016/0268-960X(90)90006-E
  31. Zhao, Z., A. Malik, M. L. Lee, and G. D. Watt. 1994. A capillary electrophoresis method for studying apo, holo, recombinant, and subunit dissociated ferritins. Anal. Biochem. 218: 47-54 https://doi.org/10.1006/abio.1994.1139