Browse > Article
http://dx.doi.org/10.5483/BMBRep.2010.43.10.683

Protective effects of carnosine and homocarnosine on ferritin and hydrogen peroxide-mediated DNA damage  

Kang, Jung-Hoon (Department of Genetic Engineering, Cheongju University)
Publication Information
BMB Reports / v.43, no.10, 2010 , pp. 683-687 More about this Journal
Abstract
Previous studies have shown that one of the primary causes of increased iron content in the brain may be the release of excess iron from intracellular iron storage molecules such as ferritin. Free iron generates ROS that cause oxidative cell damage. Carnosine and related compounds such as endogenous histidine dipetides have antioxidant activities. We have investigated the protective effects of carnosine and homocarnosine against oxidative damage of DNA induced by reaction of ferritin with $H_2O_2$. The results show that carnosine and homocarnosine prevented ferritin/$H_2O_2$-mediated DNA strand breakage. These compounds effectively inhibited ferritin/$H_2O_2$-mediated hydroxyl radical generation and decreased the mutagenicity of DNA induced by the ferritin/$H_2O_2$ reaction. Our results suggest that carnosine and related compounds might have antioxidant effects on DNA under pathophysiological conditions leading to degenerative damage such as neurodegenerative disorders.
Keywords
Carnosine; DNA; Ferritin; Hydroxyl radical; Mutation;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 3
연도 인용수 순위
1 McBride, T. J., Preston, B. D. and Loeb, L. A. (1991) Mutagenic spectrum resulting from DNA damage by oxygen radicals. Biochemistry 30, 207-213.   DOI
2 Kohen, R., Yamamoto, Y., Cundy, K. C. and Ames B. N. (1988) Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. U.S.A. 85, 3175-3179.   DOI   ScienceOn
3 Chan, W. K. M., Decker, E. A., Lee, J. B. and Butterfield, D. A. (1994) EPR-spin trapping studies of the hydroxyl radical scavenging activity of carnosine and related dipeptides. J. Agric. Food Chem. 42, 1407-1410.   DOI   ScienceOn
4 Boldyrev, A. A., Dupin, A. M., Pindel, E. V. and Severin, S. E. (1988) Antioxidative properties of histidine-containing dipeptides from skeletal muscles of vertebrates. Comp. Biochem. Physiol. 89, 245-250.   DOI   ScienceOn
5 Auroma, O. I., Laughton, M. J. and Halliwell, B. (1989) Carnosine, homocarnosine and anserine: could they act as antioxidants in vivo? Biochem. J. 264, 863-869.   DOI
6 Brown, C. E. (1981) Interactions among carnosine, anserine, ophidine and copper in biochemical adaptation. J. Theor. Biol. 88, 245-256.   DOI
7 Decker, E. A., Crum, A. D. and Calvert, J. T. (1992) Differences in the Antioxidant mechanism of carnosine in the presence of copper and iron. J. Agric. Food Chem. 40, 756-759.   DOI
8 Aldini, G., Carini, M., Beretta, G., Bradamante, S. and Facino, R. M. (2002) Carnosine is a quencher of 4-hydroxy-nonenal: through what mechanism of reaction. Biochem. Biophys. Res. Commun. 298, 699-706.   DOI   ScienceOn
9 Halliwell, B. and Gutteridge, J. M. (1981) Formation of thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett. 128, 347-352.   DOI   ScienceOn
10 Boveries, A., Oshino, N. and Chance, B. (1972) The cellular production of hydrogen peroxide. Biochem. J. 128, 617-630.   DOI
11 Imlay, J. A. and Fridovich, I. (1991) Assay of metabolic superoxide production in Escherichia coli. J. Biol. Chem. 266, 6957-6965.
12 Turrens, J. F., Beoni, M., Brilla, J., Chavez, U. B. and McCord, J. M., (1991) Mitochondrial generation of oxygen radicals during reoxygenation of ischemic tissues. Free. Radic. Res. Comms. 12-13, 681-689.
13 D’Agostino, D. P., Olson, J. E. and Dean, J. B. (2009) Acute hyperoxia increases lipid peroxidation and induces plasma membrane blebbing in human U87 glioblastoma cells. Neuroscience 159, 1011-1022.   DOI   ScienceOn
14 Gius, D. and Spitt, D. R. (2006) Redox signaling in cancer biology. Antioxid. Redox. Signal. 8, 1249-1252.   DOI   ScienceOn
15 Behl, C., Davis, J. B., Lesley, R. and Schubert, D. (1994) Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77. 817-827.   DOI   ScienceOn
16 Hipkiss, A. R. (1998) Carnosine, a protective, anti-ageing peptide. Int. J. Biochem. Cell Biol. 30, 863-868.   DOI   ScienceOn
17 Alhamdani, M. S., Al-Kassir, A. H., Abbas, F. K., Jaleel, N. A. and Al-Taee, M. F. (2007) Antiglycation and anti-oxidant effect of carnosine against glucose degradation products in peritoneal mesothelial cells. Nephron. Clin. Pract. 107, c26-34.   DOI   ScienceOn
18 Decker, E. A., Livisay, S. A. and Zhou, S. (2000) A re-evaluation of the antioxidant activity of purified carnosine. Biochemistry (Mosc) 65, 766-770.
19 Boldyrev, A., Bulygina, E., Leinsoo, T., Petrushanko, I., Tsubone, S. and Abe, H. (2004) Protection of neuronal cells aginst reactive oxygen species by carnosine and related compounds. Comp. Biochem. Physiol. 137, 81-88.   DOI   ScienceOn
20 Fu, Q., Dai, H., Hu, W., Fan, Y., Shenn, Y., Zhang, W. and Chen, Z. (2008) Carnosine protects against Abeta41-induced neurotoxicity in differentiated rat PC12 cells. Cell Mol. Neurobiol. 28, 307-316   DOI
21 Lowery Jr. T. J., Bunker, J., Zhang, B., Costen, R. and Watt, G. D. (2004) Kinetic studies of iron deposition in horse spleen ferritin using $H_2O_2$ and $O_2$ as oxidants. Biophys. Chem. 111, 173-181   DOI   ScienceOn
22 Zastawny, T. H., Altman, S. A., Randers-Eichhorn, L., Madurawe, R., Lumpkin, J. A., Dizdaroglu, M. and Rao, G. (1995) DNA base modifications and membrane damage in cultured mammalian cells treated with iron ions. Free Radic. Biol. Med. 18, 1013-1022.   DOI   ScienceOn
23 Helbock, H. J., Beckman, K. B. and Ames, B. N. (1999) 8-Hydroxydeoxyguanosine and 8-hydroxyguanine as biomarkers of oxidative DNA damage. Methods Enzymol. 300, 156-166.   DOI
24 Knovich, M. A., Storey, J. A., Coffman, L. G., Torti, S. V. and Torti, F. M. (2009) Ferritin for the clinician. Blood Rev. 23, 95-104.   DOI   ScienceOn
25 Monterio, H., Ville, G. and Winterbourn, C. (1989) Release of iron from ferritin by semiquinone, anthracycline, bipyridyl, and nitroaromatic radicals. Free Radic. Biol. Med. 6, 587-591.   DOI   ScienceOn
26 Lapenna, D., de Gioia, S., Mezzetti, A., Ciofani, G., Consoli, A., Marzio, L. and Cuccurullo, F. (1995) Cigarette smoke, ferritin, and lipid peroxidation. Am. J. Respir. Crit. Care Med. 151, 431-435.   DOI   ScienceOn
27 Linert, W., Herlinger, E., Jameson, R. F., Kienzl, E., Jellinger, K. and Youdim, M. B. (1996) Dopamine, 6-hydroxydopamine, iron, and dioxygen-their mutual interactions and possible implication in the development of Parkinson's disease. Biochim. Biophys. Acta. 1316, 160-168.   DOI   ScienceOn
28 Double, K. L., Maywald, M., Schmittle, M., Riederer, P. and Gerlach, M. (1998) In vitro studies of ferritin iron release and neurotoxicity. J. Neurochem. 70, 2492-2499.   DOI
29 Monterio, H. and Winterbourn, C. (1988) The superoxide-dependent transfer of iron from ferritin to transferrin and lactoferrin. Biochem. J. 256, 923-928.   DOI
30 Boyer, R., Grabill, T. and Petrovich, R. (1988) Reductive release of ferritin iron: a kinetic assay. Anal. Biochem. 174, 17-22.   DOI   ScienceOn
31 Halliwell, B. and Gutteridge, J. M. (1985) The importance of free radicals and catalytic metal ions in human diseases. Mol. Aspects Med. 8, 89-193.   DOI   ScienceOn
32 Gotz, E., Kunig, G., Riderer, P. and Youdim, M. B. (1994) Oxidative stress: free radical production in neural degeneration. Pharmacol. Ther. 63, 37-122.   DOI   ScienceOn
33 Hyslop, P. A., Zhang, Z., Pearson, D. V. and Phebus, L. A. (1995) Measurement of striatal H2O2 by microdialysis following global forebrain ischemia and reperfusion in the rat: correlation with the cytotoxic potential of $H_2O_2$ in vitro. Brain Res. 671, 181-186.   DOI   ScienceOn