• Title/Summary/Keyword: Fermi surface

Search Result 81, Processing Time 0.18 seconds

Peierls Instability and Spin Ordering in Graphene

  • Kim, Hyeon-Jung;Jo, Jun-Hyeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.204-204
    • /
    • 2012
  • Peierls instability and spin ordering of zigzag graphene nanoribbons (GNR) created on a fully hydrogenated graphene (graphane) are investigated as a function of their width using first-principles density-functional calculations within the generalized-gradient approximation. For the width containing a single zigzag C chain (N=1), we find the presence of a Peierls instability with a bond alternated structure. However, for width greater than N=1, the Peierls distortion is weakened or disappears because of the incommensurate feature of Fermi surface nesting due to the interaction of C chains. Instead, there exists the antiferromagnetic (AFM) spin ordering in which the edge states are ferromagnetically ordered but the two ferromagnetic (FM) edges are antiferromagnetically coupled with each other, showing that electron-lattice coupling and spin ordering in GNR are delicately competing at an extremely thin width of N=2. It is found that, as the width of GNR increases, the energy gain arising from spin ordering is enhanced, but the energy difference between the AFM and FM (where two edge states are ferromagnetically coupled with each other) orderings decreases.

  • PDF

Mapping of Work Function in Self-Assembled V2O5 Nanonet Structures

  • Park, Jeong Woo;Kim, Taekyeong
    • Journal of the Korean Chemical Society
    • /
    • v.61 no.1
    • /
    • pp.12-15
    • /
    • 2017
  • We presented a mapping the work function of the vanadium pentoxide ($V_2O_5$) nanonet structures by scanning Kelvin probe microscopy (SKPM). In this measurement, the $V_2O_5$ nanonet was self-assembled via dropping the solution of $V_2O_5$ nanowires (NWs) onto the $SiO_2$ substrate and drying the solvent, resulting in the networks of $V_2O_5$ NWs. We found that the SKPM signal as a surface potential of $V_2O_5$ nanonet is attributed to the contact potential difference (CPD) between the work functions of the metal tip and the $V_2O_5$ nanonet. We generated the histograms of the CPD signals obtained from the SKPM mapping of the $V_2O_5$ nanonet as well as the highly ordered pyrolytic graphite (HOPG) which is used as a reference for the calibration of the SKPM tip. By using the histogram peaks of the CPD signals, we successfully estimated the work function of ~5.1 eV for the $V_2O_5$ nanonet structures. This work provides a possibility of a nanometer-scale imaging of the work function of the various nanostructures and helps to understand the electrical characteristics of the future electronic devices.

CO Adsorption on Mo(110) Studied Using Thermal Desorption Spectroscopy (TDS) and Ultraviolet Photoelectron Spectroscopy (UPS)

  • Yang, Taek-Seung;Jee, Hae-geun;Boo, Jin-Hyo;Kim, Young-Dok;Lee, Soon-Bo
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.6
    • /
    • pp.1353-1356
    • /
    • 2009
  • This study examined the adsorption of CO on a Mo(110) surface by Thermal Desorption Spectroscopy (TDS) and synchrotron-radiation based photoemission spectroscopy (SRPES). CO desorption was observed at approximately 400 K ($\alpha$-CO) and > 900 K ($\beta$-CO). When CO was exposed to Mo(110) at 100 K, it showed a tilted structure at low CO coverage and a vertical structure after saturation of the tilted CO. After heating the CO-precovered sample to 900 K, a broad peak at 12 eV below the Fermi level was identified in the valence level spectra, which was assigned to either the 4$\sigma$-molecular orbital of CO, or 2s of dissociated carbon. TDS results of the $\beta$-CO showed a first order desorption. These results are in a good agreement with the observations of CO adsorption on W(110) surfaces.

Formation Mechanism of a Large Schottky Barrier Height for Cr-AlGaN/GaN Heterostructure (Cr/n-AlGaN/GaN Schottky Contact에서 높은 쇼트키 장벽 형성 메카니즘에 관한 연구)

  • Nam, Hyo-Duk;Lee, Yeung-Min;Jang, Ja-Soon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.4
    • /
    • pp.266-270
    • /
    • 2011
  • We report on the formation mechanism of large Schottky barrier height (SBH) of nonalloyed Cr Schottky contacts on strained Al0.25Ga0.75N/GaN. Based on the current-voltage (I-V) and capacitance-voltage (C-V) data, the SBHs are determined to be 1.98 (${\pm}0.02$) and 2.07 (${\pm}0.02$) eV from the thermionic field emission and two-dimensional electron gas (2DEG) calculations, respectively. Possible formation mechanism of large SBH will be described in terms of the formation of Cr-O chemical bonding at the interface between Cr and AlGaN/GaN, low binding-energy shift to surface Fermi level, and the reduction of 2DEG electrons.

Sputtering effect on chemical state changes in amorphous Ga-In-Zn-O thin film

  • Lee, Mi-Ji;Gang, Se-Jun;Baek, Jae-Yun;Kim, Hyeong-Do;Jeong, Jae-Gwan;Lee, Jae-Cheol;Lee, Jae-Hak;Sin, Hyeon-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.134-134
    • /
    • 2010
  • Ga-In-Zn-O 물질은 비정질상태에서 높은 전하 운동성을 가지고 있으며 차세대 투명전극 thin film transistor 대안 소재로 각광받고 있다. 그런데 이 물질은 ion sputtering에 따라 전기적인 특성에 큰 변화가 관찰되고 있으며, 이는 표면에서의 화학적 상태가 전기적 특성을 좌우할 것이라는 것을 의미한다. 또한 보다 안정적이고 신뢰적인 소자를 구현하기 위해서는 ion sputtering에 의한 표면에서의 화학적 특성 변화를 이해하는 것이 매우 중요하다는 것을 의미한다. 본 연구에서는 $Ga_2O_3:In_2O_3$:ZnO의 비율이 각각 1:1:1, 2:2:1, 3:2:1 그리고 4:2:1인 시료를 $Ne^+$이온을 이용하여 sputtering하면서 표면에 민감한 분광분석 기법인 x-ray photoelectron spectroscopy와 x-ray absorption spectroscopy를 이용하여 분광정보의 변화들을 연구하였다. 실험에 의하면, Ga 3d의 양에 비해서 In 4d, Zn 3d의 양은 sputtering 시간에 따라서 각 각 양이 줄어들었으며, 전체적으로 보다 산화가가 높은 경향을 보였으며, valence band maximum 근처에 subgap state를 형성하는 것을 관찰하였다. 또한 sputtering을 계속하는 경우 In 3d, In 4d, 및 Fermi energy 근처에 metallic state가 형성되는 것을 관찰하였다. 이러한 subgap state와 metallic state의 관측은 각기 sputtering에 따라서, 아직 명확하지는 않지만, surface state의 형성 및/혹은 oxygen interstitial의 형성 그리고 metallic In의 형성 및/혹은 oxygen defect의 형성이 이루어지는 것을 의미한다.

  • PDF

VALENCE BAND PHOTOEMISSION STUDY OF Fe OVERLAYERS ON Cr

  • Kang, J.S.;Hong, J.H.;Jeong, J.I.;Hwang, D.W.;Min, B.I.
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.442-446
    • /
    • 1995
  • Electronic structures of Fe overlayers on Cr(Fe/Cr) films, with an Fe coverage of $1-20{\AA}$, have been investigated by using photoemission spectroscopy. Experimental results are compared with supercell band structure calculations for a system with monolayer (ML) Fe on each side of five layer Cr, Fe(1ML)/Cr(5ML)/Fe(1ML). The extracted Fe 3d partial spectral weight in Fe/Cr exhibits very interesting features for very thin Fe overlayers. First, a sharp emissionnear the Fermi energy is observed, which is expected to originate primarily from hybridization between Fe and Cr 3d electrons at the Fe/Cr interface, and partially from the Fe 3d surface states in the Fe overlayer. Second, other structures are observed at higher binding energies which resemble the Cr 3d valence bands, also suggesting large hybridization between Fe and Cr 3d states at the Fe/Cr interface. These conjectures are confirmed by band structure calculations for Fe(1ML)/Cr(5ML)/Fe(1ML).

  • PDF

A topological metal at the surface of an ultrathin BiSb alloy film

  • Hirahara, T.;Sakamoto, Y.;Saisyu, Y.;Miyazaki, H.;Kimura, S.;Okuda, T.;Matsuda, I.;Murakami, S.;Hasegawa, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.14-15
    • /
    • 2010
  • Recently there has been growing interest in topological insulators or the quantum spin Hall (QSH) phase, which are insulating materials with bulk band gaps but have metallic edge states that are formed topologically and robust against any non-magnetic impurity [1]. In a three-dimensional material, the two-dimensional surface states correspond to the edge states (topological metal) and their intriguing nature in terms of electronic and spin structures have been experimentally observed in bulk Bi1-xSbx single crystals [2,3,4]. However, if we want to know the transport properties of these topological metals, high purity samples as well as very low temperature will be needed because of the contribution from bulk states or impurity effects. In a recent report, it was also shown that an intriguing coupling between the surface and bulk states will occur [5]. A simple solution to this bothersome problem is to prepare a topological metal on an ultrathin film, in which the surface-to-bulk ratio is drastically increased. Therefore in the present study, we have investigated if there is a method to make an ultrathin Bi1-xSbx film on a semiconductor substrate. From reflection high-energy electron diffraction observation, it was found that single crystal Bi1-xSbx films (0${\sim}30\;{\AA}A$ can be prepared on Si(111)-$7{\times}7$. The transport properties of such films were characterized by in situ monolithic micro four-point probes [6]. The temperature dependence of the resistivity for the x=0.1 samples was insulating when the film thickness was $240\;{\AA}A$. However, it became metallic as the thickness was reduced down to $30\;{\AA}A$, indicating surface-state dominant electrical conduction. Figure 1 shows the Fermi surface of $40\;{\AA}A$ thick Bi0.92Sb0.08 (a) and Bi0.84Sb0.16 (b) films mapped by angle-resolved photoemission spectroscopy. The basic features of the electronic structure of these surface states were shown to be the same as those found on bulk surfaces, meaning that topological metals can be prepared at the surface of an ultrathin film. The details will be given in the presentation.

  • PDF

Ordinary Magnetoresistance of an Individual Single-crystalline Bi Nanowire (자발 성장법으로 성장된 단결정 Bi 단일 나노선의 정상 자기 저항 특성)

  • Shim, Woo-Young;Kim, Do-Hun;Lee, Kyoung-Il;Jeon, Kye-Jin;Lee, Woo-Young;Chang, Joon-Yeon;Han, Suk-Hee;Jeung, Won-Young;Johnson, Mark
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.166-171
    • /
    • 2007
  • We report the magneto-transport properties of an individual single crystalline Bi nanowire grown by a spontaneous growth method. We have successfully fabricated a four-terminal device based on an individual 400-nm-diameter nanowire using plasma etching technique to remove an oxide layer forming on the outer surface of the nanowire. The transverse MR (2496% at 110 K) and longitudinal MR ratios (38% at 2 K) for the Bi nanowire were found to be the largest known values in Bi nanowires. This result demonstrates that the Bi nanowires grown by the spontaneous growth method are the highest-quality single crystalline in the literatures ever reported. We find that temperature dependence of Fermi energy ($E_F$) and band overlap (${\triangle}_0$) leads to the imbalance between electron concentration ($n_e$) and hole concentration ($n_h$) in the Bi nanowire, which is good agreement with the calculated $n_e\;and\;n_h$ from the respective density of states, N(E), for electrons and holes. We also find that the imbalance of $n_e\;and\;n_h$ plays a crucial role in determining magnetoresistance (MR) at T<75 K for $R_T$ and at T<205 K for $R_L$, while mean-free path is responsible for MR at T>75 K for $R_T$ and T>205 K for $R_L$.

Analysis of Channel Doping Profile Dependent Threshold Voltage Characteristics for Double Gate MOSFET (이중게이트 MOSFET에서 채널도핑분포의 형태에 따른 문턱전압특성분석)

  • Jung, Hak-Kee;Han, Ji-Hyung;Lee, Jae-Hyung;Jeong, Dong-Soo;Lee, Jong-In;Kwon, Oh-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.6
    • /
    • pp.1338-1342
    • /
    • 2011
  • In this paper, threshold voltage characteristics have been analyzed as one of short channel effects occurred in double gate(DG)MOSFET to be next-generation devices. The Gaussian function to be nearly experimental distribution has been used as carrier distribution to solve Poisson's equation, and threshold voltage has been investigated according to projected range and standard projected deviation, variables of Gaussian function. The analytical potential distribution model has been derived from Poisson's equation, and threshold voltage has been obtained from this model. Since threshold voltage has been defined as gate voltage when surface potential is twice of Fermi potential, threshold voltage has been derived from analytical model of surface potential. Those results of this potential model are compared with those of numerical simulation to verify this model. As a result, since potential model presented in this paper is good agreement with numerical model, the threshold voltage characteristics have been considered according to the doping profile of DGMOSFET.

Josephson effect of the superconducting van der Waals junction

  • Park, Sungyu;Kwon, Chang Il;Kim, Jun Sung
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.6-9
    • /
    • 2021
  • Heterostructures fabricated by various combinations of van der Waals (vdW) materials enable us to investigate disorder-free physical properties and realize novel functional devices. Superconducting vdW junctions have attracted a lot of attention because of its simple structure without a barrier layer. In superconducting vdW junction, without extra fabrication effort, a natural barrier can be formed, whose character is sensitive to distance and angle of lattice between two superconducting vdW materials. Using high-quality single crystals and the dry transfer technique, we fabricated the vertically stacked NbSe2/NbSe2 and FeSe/FeSe vdW junctions and investigated their Josephson junction properties. We found that in the FeSe junctions, Josephson coupling is extremely sensitive to the fabrication conditions, in contrast to the NbSe2 junctions. We attributed this distinct character of the FeSe junctions to surface instability and small Fermi surface of FeSe.