Browse > Article
http://dx.doi.org/10.9714/psac.2021.23.2.006

Josephson effect of the superconducting van der Waals junction  

Park, Sungyu (Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science)
Kwon, Chang Il (Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science)
Kim, Jun Sung (Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science)
Publication Information
Progress in Superconductivity and Cryogenics / v.23, no.2, 2021 , pp. 6-9 More about this Journal
Abstract
Heterostructures fabricated by various combinations of van der Waals (vdW) materials enable us to investigate disorder-free physical properties and realize novel functional devices. Superconducting vdW junctions have attracted a lot of attention because of its simple structure without a barrier layer. In superconducting vdW junction, without extra fabrication effort, a natural barrier can be formed, whose character is sensitive to distance and angle of lattice between two superconducting vdW materials. Using high-quality single crystals and the dry transfer technique, we fabricated the vertically stacked NbSe2/NbSe2 and FeSe/FeSe vdW junctions and investigated their Josephson junction properties. We found that in the FeSe junctions, Josephson coupling is extremely sensitive to the fabrication conditions, in contrast to the NbSe2 junctions. We attributed this distinct character of the FeSe junctions to surface instability and small Fermi surface of FeSe.
Keywords
superconductivity; josephson junction; van der waals junction;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 K. S. Novoselov, A. K. Geim, S. V Morozov, D. Jiang, Y. Zhang, S. V Dubonos, I. V Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films," Science (80-.), vol. 306, pp. 666, 2004.   DOI
2 A. K. Geim and I. V Grigorieva, "Van Der Waals Heterostructures," Nature, vol. 499, pp. 419, 2013.   DOI
3 Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, and X. Duan, "Van Der Waals Heterostructures and Devices," Nat. Rev. Mater., vol. 1, pp. 16042, 2016.   DOI
4 N. Yabuki, R. Moriya, M. Arai, Y. Sata, S. Morikawa, S. Masubuchi, and T. Machida, "Supercurrent in van Der Waals Josephson Junction," Nat. Commun., vol. 7, pp. 10616, 2016.   DOI
5 A. I. Coldea and M. D. Watson, "The Key Ingredients of the Electronic Structure of FeSe," Annu. Rev. Condens. Matter Phys., 2017.
6 D. J. Rahn, S. Hellmann, M. Kallane, C. Sohrt, T. K. Kim, L. Kipp, and K. Rossnagel, "Gaps and Kinks in the Electronic Structure of the Superconductor 2H-NbSe2 from Angle-Resolved Photoemission at 1 K," Phys. Rev. B, vol. 85, pp. 224532, 2012.   DOI
7 T. Dvir, F. Massee, L. Attias, M. Khodas, M. Aprili, C. H. L. Quay, and H. Steinberg, "Spectroscopy of Bulk and Few-Layer Superconducting NbSe2 with van Der Waals Tunnel Junctions," Nat. Commun., vol. 9, pp. 598, 2018.   DOI
8 M. Kim, G.-H. Park, J. Lee, J. H. Lee, J. Park, H. Lee, G.-H. Lee, and H.-J. Lee, "Strong Proximity Josephson Coupling in Vertically Stacked NbSe2-Graphene-NbSe2 van Der Waals Junctions," Nano Lett., vol. 17, pp. 6125, 2017.   DOI
9 K. S. Novoselov, A. Mishchenko, A. Carvalho, and A. H. Castro Neto," 2D Materials and van Der Waals Heterostructures", Science (80-.), vol. 353, 2016.
10 P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, K. Okazaki, Z. Wang, J. Wen, G. D. Gu, H. Ding, and S. Shin, "Observation of Topological Superconductivity on the Surface of an Iron-Based Superconductor," Science (80-.), vol. 360, pp. 182, 2018.   DOI
11 Y. Bang and G. R. Stewart, "Superconducting Properties of the S±-Wave State: Fe-Based Superconductors," J. Phys. Condens. Matter, vol. 29, pp. 123003, 2017.   DOI
12 C.-L. Song, Y.-L. Wang, P. Cheng, Y.-P. Jiang, W. Li, T. Zhang, Z. Li, K. He, L. Wang, J.-F. Jia, H.-H. Hung, C. Wu, X. Ma, X. Chen, and Q.-K. Xue, "Direct Observation of Nodes and Twofold Symmetry in FeSe Superconductor," Science (80-.), vol. 332, pp. 1410, 2011.   DOI
13 J. M. Ok, C. Il Kwon, Y. Kohama, J. S. You, S. K. Park, J. Kim, Y. J. Jo, E. S. Choi, K. Kindo, W. Kang, K.-S. Kim, E. G. Moon, A. Gurevich, and J. S. Kim, "Observation of In-Plane Magnetic Field Induced Phase Transitions in FeSe," Phys. Rev. B, vol. 101, pp. 224509, 2020.   DOI
14 S. Medvedev, T. M. McQueen, I. A. Troyan, T. Palasyuk, M. I. Eremets, R. J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, and C. Felser, "Electronic and Magnetic Phase Diagram of β-Fe1.01Se with Superconductivity at 36.7K under Pressure," Nat Mater., vol. 8, pp. 630, 2009.   DOI
15 G. R. Bhimanapati, Z. Lin, V. Meunier, Y. Jung, J. Cha, S. Das, D. Xiao, Y. Son, M. S. Strano, V. R. Cooper, L. Liang, S. G. Louie, E. Ringe, W. Zhou, S. S. Kim, R. R. Naik, B. G. Sumpter, H. Terrones, F. Xia, Y. Wang, J. Zhu, D. Akinwande, N. Alem, J. A. Schuller, R. E. Schaak, M. Terrones, and J. A. Robinson, "Recent Advances in Two-Dimensional Materials beyond Graphene," ACS Nano, vol. 9, pp. 11509, 2015.   DOI
16 C. I. Kwon, J. M. Ok, and J. S. Kim, "Anisotropic Superconductivity of High Quality FeSe1-x Single Crystal," Prog. Supercond. Cryog., vol. 16, pp. 26, 2014.   DOI
17 Y. Noat, J. A. Silva-Guillen, T. Cren, V. Cherkez, C. Brun, S. Pons, F. Debontridder, D. Roditchev, W. Sacks, L. Cario, P. Ordejon, A. Garcia, and E. Canadell, "Quasiparticle Spectra of 2H-NbSe2: Two-Band Superconductivity and the Role of Tunneling Selectivity," Phys. Rev. B, vol. 92, pp. 134510, 2015.   DOI
18 Y. Liu, Y. Huang, and X. Duan, "Van Der Waals Integration before and beyond Two-Dimensional Materials," Nature, vol. 567, pp. 323, 2019.   DOI
19 T. Hanaguri, S. Niitaka, K. Kuroki, and H. Takagi, "Unconventional S-Wave Superconductivity in Fe(Se,Te)," Science (80-.), vol. 328, pp. 474, 2010.   DOI