Browse > Article
http://dx.doi.org/10.4313/JKEM.2011.24.4.266

Formation Mechanism of a Large Schottky Barrier Height for Cr-AlGaN/GaN Heterostructure  

Nam, Hyo-Duk (Department of Electronic Engineering and LED-IT Fusion Technology Research Center (LIFTRC), Yeungnam University)
Lee, Yeung-Min (Department of Electronic Engineering and LED-IT Fusion Technology Research Center (LIFTRC), Yeungnam University)
Jang, Ja-Soon (Department of Electronic Engineering and LED-IT Fusion Technology Research Center (LIFTRC), Yeungnam University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.24, no.4, 2011 , pp. 266-270 More about this Journal
Abstract
We report on the formation mechanism of large Schottky barrier height (SBH) of nonalloyed Cr Schottky contacts on strained Al0.25Ga0.75N/GaN. Based on the current-voltage (I-V) and capacitance-voltage (C-V) data, the SBHs are determined to be 1.98 (${\pm}0.02$) and 2.07 (${\pm}0.02$) eV from the thermionic field emission and two-dimensional electron gas (2DEG) calculations, respectively. Possible formation mechanism of large SBH will be described in terms of the formation of Cr-O chemical bonding at the interface between Cr and AlGaN/GaN, low binding-energy shift to surface Fermi level, and the reduction of 2DEG electrons.
Keywords
Schottky contact; AlGaN-GaN interface; Schottky barrier height;
Citations & Related Records
연도 인용수 순위
  • Reference
1 O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Scharff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck, J. Appl. Phys., 85, 3222 (1999).   DOI
2 J. P. Ibbetson, P. T. Fini, K. D. Ness, S. P. DenBarr, J. S. Speck, and U. K. Mishra, Appl. Phys. Lett.,. 77, 250 (2000).   DOI
3 Z. Lin, J. Lee, and W. Lu, Appl. Phys. Lett.,. 84, 1585 (2004).   DOI
4 C. M. Jeon and J. R. Lee, Appl. Phys. Lett. 82, 4301 (2003).   DOI
5 H. W. Jang, J. M. Baik, M. K. Lee, H. J. Shin, and J. L. Lee., Electrochem. Solid-State Lett., 151(8), G536 (2004).
6 J.-S. Jang, T.-Y. Seong, and S.-R. Jeon, Electrochem. Solid-State Lett., 10(4), H120 (2007).   DOI
7 J.-S. Jang, D. Kim, and T.-Y. Seong, J. Appl. Phys. 99, 073704 (2006).   DOI
8 E. T. Yu, G. J. Sullivan, P. M. Asbeck, C. D. Wang, D. Qiao, and S. S. Lau, Appl. Phys. Lett. 71, 2794 (1997).   DOI
9 G. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, Appl. Phys. Lett. 68, 2541 (1996).   DOI
10 D. Bruuner, H. Angerer, E. Bustarret, R. Hopler, R. Dimitrov, O. Ambacher, and M. Stutzmann, J. Appl. Phys, 82, 5090 (1997).   DOI
11 M. Shur, Mater. Res. Soc. Symp. Proc. 483, 15 (1998).
12 Z. Lin, W. Lu, J. Lee, D. Liu, J. S. Flynm, and G. R. Brandes, Appl. Phys. Lett., 82, 4364 (2003).   DOI
13 M. A. Khan, Q. Chen, M. S. Shur, B. T. MsDermott, and J. A. Higgins, IEEE Electron Device Lett. 17, 325 (1996).   DOI
14 E. J. Miller, X. Z. Dang, and E. T. Yu, J. Appl. Phys. 88, 5951 (2000).   DOI
15 A. J. Sierakowski, W. J. Scharff, and L. F. Eastman, J. Appl. Phys,. 87, 334 (2000).   DOI