Browse > Article
http://dx.doi.org/10.4283/JKMS.2007.17.4.166

Ordinary Magnetoresistance of an Individual Single-crystalline Bi Nanowire  

Shim, Woo-Young (Department of Materials Science and Engineering, Yonsei University)
Kim, Do-Hun (Department of Materials Science and Engineering, Yonsei University)
Lee, Kyoung-Il (Department of Materials Science and Engineering, Yonsei University)
Jeon, Kye-Jin (Department of Materials Science and Engineering, Yonsei University)
Lee, Woo-Young (Department of Materials Science and Engineering, Yonsei University)
Chang, Joon-Yeon (Korea Institute of Science and Technology (KIST))
Han, Suk-Hee (Korea Institute of Science and Technology (KIST))
Jeung, Won-Young (Korea Institute of Science and Technology (KIST))
Johnson, Mark (Naval Research Laboratory)
Abstract
We report the magneto-transport properties of an individual single crystalline Bi nanowire grown by a spontaneous growth method. We have successfully fabricated a four-terminal device based on an individual 400-nm-diameter nanowire using plasma etching technique to remove an oxide layer forming on the outer surface of the nanowire. The transverse MR (2496% at 110 K) and longitudinal MR ratios (38% at 2 K) for the Bi nanowire were found to be the largest known values in Bi nanowires. This result demonstrates that the Bi nanowires grown by the spontaneous growth method are the highest-quality single crystalline in the literatures ever reported. We find that temperature dependence of Fermi energy ($E_F$) and band overlap (${\triangle}_0$) leads to the imbalance between electron concentration ($n_e$) and hole concentration ($n_h$) in the Bi nanowire, which is good agreement with the calculated $n_e\;and\;n_h$ from the respective density of states, N(E), for electrons and holes. We also find that the imbalance of $n_e\;and\;n_h$ plays a crucial role in determining magnetoresistance (MR) at T<75 K for $R_T$ and at T<205 K for $R_L$, while mean-free path is responsible for MR at T>75 K for $R_T$ and T>205 K for $R_L$.
Keywords
single-crystalline Bi nanowire; magnetoresistance (MR); simple two band (STB) model; OMR;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Y. Yang, K. Liu, K. Hong, D. H. Reich, P. C. Searson, and C. L. Chien, Science, 284, 1335 (1999)   DOI   ScienceOn
2 K. Liu, C. L. Chien, and P. C. Searson, Phys. Rev. B, 58, R14681 (1998)   DOI
3 Y. Zhang, J. Small, M. Amori, and P. Kim, Phys. Rev. Lett., 94, 176803 (2005)   DOI   ScienceOn
4 S. Kasap, Principle of Electronic Materials and Devices (New York: McGraw-Hill, 2002)
5 M. Cankurtaran, M. Onder, H. Celik, and T. Alper, J. Phys. C: Solid State Phys., 20, 3875 (1987)   DOI   ScienceOn
6 J. Heremans, C. M. Thrush, Y. Lin, S. Cronin, Z. Zhang, M. S. Dresselhaus, and J. F. Mansfield, Phys. Rev. B, 61, 2921 (2000)   DOI   ScienceOn
7 Z. Zhang, X. Sun, M. S. Dresselhaus, J. Y. Ying, and J. Heremans, Phys. Rev. B, 61, 4850 (2000)   DOI   ScienceOn
8 W. Shim et al., to be published
9 S. B. Cronin et al., Nanotech., 13, 653 (2002)   DOI   ScienceOn
10 D. Choi, A. Balandin, M. Leung, G. Stupian, N. Presser, S. Chung, J. Heath, A. Khitun, and K. Wang, Appl. Phys. Lett., 89, 141503 (2006)   DOI   ScienceOn
11 W. Shim et al., to be published
12 K. Liu, C. L. Chien, P. C. Searson, and K. Y. Zhang, Appl. Phys. Lett., 73, 1436 (1998)   DOI   ScienceOn
13 C. Gallo, B. Chandrasekhar, and P. Sutter, J. Appl. Phys., 34, 144 (1963)   DOI
14 S. Cronin, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (1999)
15 Y. Lin, S. B. Cronin, J. Y. Ying, M. S. Dresselhaus, and J. Heremans, Appl. Phys. Lett., 76, 3944 (2000)   DOI   ScienceOn
16 Y. M. Lin, X. Sun, and M. S. Dresselhaus, Phys. Rev. B, 62, 4610 (2000)   DOI   ScienceOn