Browse > Article
http://dx.doi.org/10.5012/jkcs.2017.61.1.12

Mapping of Work Function in Self-Assembled V2O5 Nanonet Structures  

Park, Jeong Woo (Department of Physics, Hankuk University of Foreign Studies)
Kim, Taekyeong (Department of Physics, Hankuk University of Foreign Studies)
Publication Information
Abstract
We presented a mapping the work function of the vanadium pentoxide ($V_2O_5$) nanonet structures by scanning Kelvin probe microscopy (SKPM). In this measurement, the $V_2O_5$ nanonet was self-assembled via dropping the solution of $V_2O_5$ nanowires (NWs) onto the $SiO_2$ substrate and drying the solvent, resulting in the networks of $V_2O_5$ NWs. We found that the SKPM signal as a surface potential of $V_2O_5$ nanonet is attributed to the contact potential difference (CPD) between the work functions of the metal tip and the $V_2O_5$ nanonet. We generated the histograms of the CPD signals obtained from the SKPM mapping of the $V_2O_5$ nanonet as well as the highly ordered pyrolytic graphite (HOPG) which is used as a reference for the calibration of the SKPM tip. By using the histogram peaks of the CPD signals, we successfully estimated the work function of ~5.1 eV for the $V_2O_5$ nanonet structures. This work provides a possibility of a nanometer-scale imaging of the work function of the various nanostructures and helps to understand the electrical characteristics of the future electronic devices.
Keywords
Scanning kelvin probe microscopy; Work function; $V_2O_5$ nanonet; Contact potential difference; Fermi level;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shizuo, T.; Koji, N.; Yasunori, T. J. Phys. D: Appl. Phys. 1996, 29, 2750.   DOI
2 Reynolds, K. J.; Barker, J. A.; Greenham, N. C.; Friend, R. H.; Frey, G. L. J. Appl. Phys. 2002, 92, 7556.   DOI
3 Meyer, J.; Hamwi, S.; Bulow, T.; Johannes, H.-H.; Riedl, T.; Kowalsky, W. Appl. Phys. Lett. 2007, 91, 113506.   DOI
4 Kanno, H.; Holmes, R. J.; Sun, Y.; Kena-Cohen, S.; Forrest, S. R. Adv. Mater. 2006, 18, 339.   DOI
5 Meyer, J.; Hamwi, S.; Kroger, M.; Kowalsky, W.; Riedl, T.; Kahn, A. Adv. Mater. 2012, 24, 5408.   DOI
6 Zilberberg, K.; Trost, S.; Meyer, J.; Kahn, A.; Behrendt, A.; Lutzenkirchen-Hecht, D.; Frahm, R.; Riedl, T. Adv. Funct. Mater. 2011, 21, 4776.   DOI
7 Glynn, C.; Creedon, D.; Geaney, H.; Armstrong, E.; Collins, T.; Morris, M. A.; Dwyer, C. O. Sci. Rep. 2015, 5, 11574.   DOI
8 Baeg, K.-J.; Bae, G.-T.; Noh, Y.-Y. ACS Appl. Mater. Interfaces 2013, 5, 5804.   DOI
9 Zhu, J.; Cao, L.; Wu, Y.; Gong, Y.; Liu, Z.; Hoster, H. E.; Zhang, Y.; Zhang, S.; Yang, S.; Yan, Q.; Ajayan, P. M.; Vajtai, R. Nano Lett. 2013, 13, 5408.   DOI
10 Yu, Y.-J.; Zhao, Y.; Ryu, S.; Brus, L. E.; Kim, K. S.; Kim, P. Nano Lett. 2009, 9, 3430.   DOI
11 Maragliano, C.; Lilliu, S.; Dahlem, M. S.; Chiesa, M.; Souier, T.; Stefancich, M. Sci. Rep. 2014, 4, 4203.
12 Rosenwaks, Y.; Shikler, R.; Glatzel, T.; Sadewasser, S. Phys. Rev. B 2004, 70, 085320.   DOI
13 Melitz, W.; Shen, J.; Kummel, A. C.; Lee, S. Surf. Sci. Rep. 2011, 66, 1.   DOI
14 Panchal, V.; Pearce, R.; Yakimova, R.; Tzalenchuk, A.; Kazakova, O. Sci. Rep. 2013, 3, 2597.   DOI
15 Cherniavskaya, O.; Chen, L.; Weng, V.; Yuditsky, L.; Brus, L. E. J. Phys. Chem. B 2003, 107, 1525.
16 Myung, S.; Lee, M.; Kim, G. T.; Ha, J. S.; Hong, S. Adv. Mater. 2005, 17, 2361.   DOI
17 Muster, J.; Kim, G. T.; Krstic, V.; Park, J. G.; Park, Y. W.; Roth, S.; Burghard, M. Adv. Mater. 2000, 12, 420.   DOI
18 Reddy, P.; Jang, S.-Y.; Segalman, R. A.; Majumdar, A. Science 2007, 315, 1568.   DOI
19 Choi, S.; Shaolin, Z.; Yang, W. J. Korean Phys. Soc. 2014, 64, 1550.   DOI
20 Zilberberg, K.; Trost, S.; Kahn, A.; Riedl, T. Adv. Funct. Mater. 2011, 21, 4776.   DOI
21 Gerardo, T.; Pampel, J.; Liracantu, M. Energy Environ. Sci. 2013, 6, 3088.   DOI
22 Meyer, J.; Zilberberg, K.; Riedl, T.; Kahn, A. J. Appl. Phys. 2011, 110, 033710.   DOI
23 Hancox, I.; Rochford, L. A.; Clare, D.; Sullivan, P.; Jones, T. S. Appl. Phys. Lett. 2011, 99, 013304.   DOI