대부분의 스테레오 정합 방법은 두 점간의 대응점을 측정하는데 있어 밝기값을 사용하며 잡음의 영향을 받은 화소가 정합에 사용될 경우 정합 성능이 저하된다. 따라서 잡음은 정합 성능을 결정짓는 중요한 역할을 한다. 본 논문에서는 고해상도 위성영상에서 정합 성능을 향상시키기 위해 잡음에 강건한 밝기 필터와 에지 필터를 이용하여 정합하는 방법을 제안한다. Mean, Median, Midpoint, Gaussian 필터와 같은 밝기 필터와 Gradient, Roberts, Prewitt, Sobel, Laplacian 필터와 같은 에지 필터를 사용하였다. 에지필터와 밝기 필터의 성능 평가를 위해 균일 잡음 또는 가우시안 잡음이 첨가된 합성 영상과 위성 영상에 대해 실험을 수행하였고 필터들은 성능에 따라 순위를 정하였다. 밝기 필터와 에지 필터들 중에서 Median 필터와 Sobel 필터가 가장 우수한 성능을 나타낸 반면에 Midpoint 필터와 Laplacian 필터는 가장 저조한 성능을 나타내었다. Ikonos 스테레오 위성영상을 실험 영상으로 사용하였으며 Median 필터와 Sobel 필터를 이용한 정합 방법이 다른 필터 조합을 이용한 정합 방법보다 향상된 정합 결과를 나타내었다.
The sensory stimulation of a cosmetic product has been deemed to be an ancillary aspect until a decade ago. That point of view has drastically changed on different levels in just a decade. Nowadays cosmetic formulators should unavoidably meet the needs of consumers who want sensory satisfaction, although they do not have much time for new product development. The selection of new products from candidate products largely depend on the panel of human sensory experts. As new product development cycle time decreases, the formulators wanted to find systematic tools that are required to filter candidate products into a short list. Traditional statistical analysis on most physical property tests for the products including tribology tests and rheology tests, do not give any sound foundation for filtering candidate products. In this paper, we suggest a deep learning-based analysis method to identify hand cream products by raw electric signals from tribological sliding test. We compare the result of the deep learning-based method using raw data as input with the results of several machine learning-based analysis methods using manually extracted features as input. Among them, ResNet that is a deep learning model proved to be the best method to identify hand cream used in the test. According to our search in the scientific reported papers, this is the first attempt for predicting test cosmetic product with only raw time-series friction data without any manual feature extraction. Automatic product identification capability without manually extracted features can be used to narrow down the list of the newly developed candidate products.
Abdul Samad;AMM Nurul Alam;Swati Kumari;Md. Jakir Hossain;Eun-Yeong Lee;Young-Hwa Hwang;Seon-Tea Joo
한국축산식품학회지
/
제44권2호
/
pp.284-298
/
2024
Restructured meat (RM) products are gaining importance as an essential component of the meat industry due to consumers' interest in health benefits. RM products imply the binding or holding of meat, meat by-products, and vegetable proteins together to form a meat product with meat's sensory and textural properties. RM products provide consumers with diversified preferences like the intake of low salt, low fat, antioxidants, and high dietary fiber in meat products. From the point of environmental sustainability, RM may aid in combining underutilized products and low-valued meat by adequately utilizing them instead of dumping them as waste material. RM processing technique might also help develop diversified and new hybrid meat products. It is crucial to have more knowledge on the quality issues, selection of binding agents, their optimum proportion, and finally, the ideal processing techniques. It is observed in this study that the most crucial feature of RM could be its healthy products with reduced fat content, which aligns with the preferences of health-conscious consumers who seek low-fat, low-salt, high-fiber options with minimal synthetic additives. This review briefly overviews RM and the factors affecting the quality and shelf life. Moreover, it discusses the recent studies on binding agents in processing RM products. Nonetheless, the recent advancements in processing and market scenarios have been summarized to better understand future research needs. The purpose of this review was to bring light to the ways of sustainable and economical food production.
본 논문에서는 키 프레임 영상과 SURF 특징점 기반의 시각 단어들을 이용한 효과적인 실시간 시각 루프 결합 탐지기 VILODE를 제안한다. 시각 루프 결합 탐지기는 과거에 지나온 위치들 중 하나를 다시 재방문하였는지를 판단하기 위해, 새로운 입력 영상을 이미 지나온 위치들에서 수집한 과거 영상들과 모두 비교해보아야 한다. 따라서 새로운 위치나 장소를 방문할수록 비교 대상 영상들이 계속해서 증가하기 때문에, 일반적으로 루프 결합 탐지기는 실시간 제약과 높은 탐지 정확도를 동시에 만족하기 어렵다. 이러한 문제점을 극복하기 위해, 본 시스템에서는 입력 영상들 중에서 의미 있는 것들만을 선택해 이들만을 비교하는 효과적인 키 프레임 선택 방법을 채택하였다. 따라서 루프 탐지에 필요한 영상 비교를 대폭 줄일 수 있다. 또한 본 시스템에서는 루프 결합 탐지의 정확도와 효율성을 높이기 위해, 키 프레임 영상들을 시각 단어들로 표현하고, DBoW 데이터베이스 시스템을 이용해 키 프레임 영상들에 대한 색인을 구성하였다. TUM 대학의 벤치마크 데이터들을 이용한 실험을 통해, 본 논문에서 제안한 시각 루프 결합 탐지기의 높은 성능을 확인할 수 있었다.
현재 국내 대부분의 토목 건축 구조물이 BIM 정보가 부재한 상황에서 준공 BIM(as-built BIM)의 수요가 점차 증가하고 있다. 준공 BIM 구축을 위한 공간자료 취득에는 고밀도의 포인트 클라우드를 생성할 수 있는 레이저 스캐너가 주로 활용되고 있다. 하지만 기존의 고정식 스캔 시스템은 이동이 번거롭고, 정밀한 위치 선정이 필요 하며, 스캔 자료 정합을 위해 별도의 표지를 설치하거나 공액점을 추출하는 과정이 필요하다. 본 연구에서는 수작업을 최소화하기 위해 기존의 고정식 스캔 시스템을 대체할 수 있는 이동식 스캔 시스템을 제안하고자 하며, 기반 기술로 graph-based SLAM을 적용하였다. 테스트 장비는 총 세 개의 2차원 스캐너를 탑재하고 있으며, 중앙의 한 개는 수평으로 설치되어 graph 구축을 통한 이동경로취득에 사용되었고, 좌우 두 개는 수직으로 설치되어 시스템 진행의 연직 방향으로 주변 구조물에 대한 3차원 스캔 정보 취득에 사용되었다. 개발된 graph-based SLAM은 이동경로 상에 누적된 위치오차를 해소하기 위한 loop closure 처리 방법으로 Adaboost 기계학습을 적용하였다. 이는 특히 본 연구에서 사용한 장비와 같이 기계학습을 위한 다수의 feature 정보를 제공할 수 있는 멀티 스캐너 시스템에 적합한 방식이며, 두 실내공간을 대상으로 한 테스트에서 단일 스캐너 대비 false positive rate를 각각 7.9% 및 13.6%까지 줄일 수 있었다. 최종적으로 연구대상지역의 2차원 및 3차원 지도 구축을 통해 개발된 graph-based SLAM의 효용성을 확인하였다.
본 논문은 컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구로써 기존 연구의 시공간적 제약성 및 실시간 처리가 어려운 단점을 보완하여 초당 30 프레임으로 이루어져 있는 저해상도 동영상(320*240)을 대상으로 다양한 환경에서 실시간 처리가 가능한 움직임 검출 및 장면 분석 알고리즘을 제안하고 이를 이용해 동영상 감시 시스템을 구축한다. 먼저 장면 분석을 수행하기 위한 전처리 과정인 움직임 검출 알고리즘에서는 연속된 프레임 중 의미 없는 유사 프레임과 배경을 제거하고 움직임 영역만을 검출하기 위해 웨이브렛 변환과 에지 히스토그램을 이용하여 샷의 경계를 검출한다. 다음으로 키프레임 선정 파라미터에 의해 샷 경계 내 대표 키프레임을 선정하며, 에지 히스토그램 및 수학적 형태론을 이용하여 움직임 영역만을 검출한다. 장면 분석 알고리즘에서는 검출된 객체의 수직 수평 비율과 질량 중심을 통해 재구성된 허프 변환 후의 각도를 이용해 독립 객체 분석을 수행하며, '서다, 걷다, 눕다, 앉다'의 4가지 기본 상황 정보를 정의한다. 또한 각 상황의 연결 상태 추정을 통해 일반 상황 및 위급 상황으로 구성되는 단순 상황 모델을 정의함으로써 장면 분석을 수행하며, 제안된 알고리즘의 실시간 처리 가능성을 확인하기 위해 시스템을 구성한다. 제안된 시스템은 저해상도 영상을 대상으로 인식률 면에서 평균 92.5%의 성능을 보였으며, 처리속도는 프레임 당 평균 0.74초로 실시간 처리가 가능함을 확인하였다.
최근 학교폭력이 심각한 사회적 병리현상으로 대두되는 시점에서 2012년 2월 국무총리실 주재로 안전행정부와 교육과학기술부 합동으로 "학교폭력근절 종합대책"이라는 정책적 안전장치가 마련되었다. 이 정책은 2012년 3월부터 1년간 시범운영을 하게 되었으나, 실효성에 대한 우려의 목소리가 일각에서는 적지 않게 제기되고 있는 실정이다. 그래서 본 연구는 "학교폭력근절종합대책"에 대한 실효성을 검증해 보고자 각 정책항목(근본대책)을 5점 Likert 척도로 설문지를 구성한 후 서울에 소재하고 있는 고등학교에 재직 중인 172명의 교사들을 대상으로 설문조사를 실시하였다. 근본대책 가운데, '교육 전반에 걸친 인성교육 실천'에 대한 대책안 총 12개(관련없는 1문항 제외) 가운데, '다양한 예술교육 기회 확대 및 독서활동을 지원'이 평균값이 가장 높게 나타났으며, 다음으로는 '인성발달 관련 특기사항 결과를 입학사정관전형, 자기주도 학습 전형에 반영'이 높게 나타났다. 그리고 '가정과 사회의 역할 강화'에 대한 대책안 총 3개 가운데, '범정부적으로 학교폭력 근절을 위해 방송, 언론, 시민단체와 연계하여 연중 캠페인 실시'가 평균값이 가장 높게 나타났다. 마지막으로 '게임 인터넷 중독 등 유해요인 대책'에 관한 대책안 총 7개 가운데, '게임 인터넷 중독 예방을 위한'학생 생활지도 요령'에 따라 단계적으로 게임 인터넷 중독 예방교육 강화'가 평균값이 가장 높게 나타났으며, 다음으로 '인터넷 중독 예방교육에 필요한 다양한 교육용 콘텐츠를 개발하여 현장에 보급'으로 조사되었다.
GC/MS (gas chromatography/mass spectrometry)는 훌륭한 분리능과 재현성으로 인해 널리 활용되고 있으며, 정립된 데이터베이스의 활용을 통한 성분 분석에서 활용도가 높다. 또한 HS-SPME (headspacesolid phase micro extraction)법은 용매로 추출을 하지 않은 휘발성 물질의 추출을 하는데 널리 사용되었다. 이 두 방법의 연계는 다양한 시료에서 발생하는 휘발성 성분의 분석에 널리 활용되었다. 위 특징을 이용하여 살아있는 Camponotus japonicus가 분비하는 미량의 페로몬 구성 성분의 분석 방법을 확립하였다. n-Decane, n-undecane, n-tridecane 등의 물질이 미량 페로몬에서 검출되었으며, 이 탄화수소들을 분석하는데 적합한 SPME fiber, 추출 온도, 추출 시간을 최적화하였다. 살아있는 시료를 분석할 수 있기 때문에 특정 현상이 발생하는 그 순간을 분석하는 장점이 있는 한편, 살아있는 시료를 분석하기 때문에 추출 시간 등이 제한된다는 한계점이 있었으나 살아있는 HS-SPME GC/MS 분석방법이 정립된다면 살아있는 시료를 죽일 필요 없다는 점에서 친환경적인 연구의 발전에 해결책이 될 수 있을 것으로 전망한다.
일부 예술가와 과학자의 물리적 현상과 그 표현형식에 대한 연구에서 시작된 애니메이션은 20세기후반에 들어 인식론과 이미지 생산 기술의 급속한 발달에 힘입어 기존의 미디어 기능을 통합, 재창조를 수행하며 대중문화콘텐츠 형성에 핵심적인 요소로 인식되어 왔다. 현대의 애니메이션은 작가의 예술 활동만큼이나 상업성과 흥행 여부도 강조되며 그 대상인 관객도 배제할 수 없다. 이것은 애니메이션이 예술적 의미에서 상업적 의미까지 그 범위가 확장되었음을 뜻한다. 관객은 애니메이션에서 단순히 '볼거리'와 '들을 거리' 만을 제공받고자 하는 것이 아니며 그이상의 간접적인 정신적 충족을 요구한다. 반면 연출자는 관객의 몰입을 이끌어내 자신이 의도한 신비화된 세계관으로 작품 안으로 유도하고자 한다. 여기서 관객과 연출자간의 충돌이 일어나며 연출자에게는 그 해결점으로 '소통에 대한 기교와 기술'이 요구된다. 어떻게 말할 것인가'로 축약되는 소통의 기술은 애니메이션 연출가가 관객에게 접근하는 표현 방법이며 관객의 심리적 면과 밀접한 관계가 있다. 관객은 연출자와 시점의 동일선상에 놓이지만 화면이라는 제한적 공간에서 재현되기 때문에 관객은 수용하는 입장이고 연출자는 제공하는 입장이기에 연출자에게 주도권이 부여되기 때문이다. 이러한 이유로 연출자는 관객의 심리적인 면에 주의를 기울일 필요가 있고 정신분석학의 이론에 따라 설명이 가능하다. 본고에서는 애니메이션이 "어떻게 관객과 연출자가 동일선상에 놓일 수 있는가?" 하는 논리 아래 관객의 심리현상중 하나인 '시각포획 현상'으로 일어나는 '선택적 주의집중'과 하위 개념인 '목표 지향적 선별기능'과 '자극에 의한 포착기능'을 심리학 이론의 배경으로 자료를 삼고자 한다. 또한 그에 따른 관객의 선택적 주의집중을 이끌어내는 유도장치들이 애니메이션 안에서 어떻게 적용되고 있는가를 고찰해보자 한다.
자동문서분류는 문서의 내용에 기반하여 미리 정의된 항목에 자동으로 할당하는 작업으로서 효율적인 정보관리 및 검색등에 필수적인 작업이다. 기존의 문서분류성능 향상을 위한 연구들은 대부분 분류모델 자체를 개선시키는 데 주력해왔으며 통계적인 방법으로 그 범위가 제한되어왔다. 본 연구에서는 자동문서분류의 성능향상을 위해 데이터마이닝 기법과 결함허용방법을 이용하는 개선된 학습알고리즘과 후처 리 방법에 의한 RTPost 시스템을 제안한다. RTPost 시스템은 학습문서 선택작업 이전에 분류항목 설정의 문제를 다루며, 분류함수의 성능보다는 지정방식의 문제점을 감안하여 학습과 분류 후처리 프로세스를 개선하려는 것이다. 이를 통해 분류결과에 중요한 영향을 미쳐왔던 학습문서의 수와 선택방법, 분류모델의 성능등에 의존하지 않는 안정적인 분류가 가능하였고, 이를 분류오류율이 높은 경계선 인접영역에 위치한 문서들에 적용한 결과 높은 정확율을 얻을 수 있었다. 뿐만 아니라, RTPost 프로세스를 진행하는 동안 능동학습방법의 장점을 수용하여 학습효과는 높이며 비용을 감소시킬 수 있는 자가학습방법(self learning)방법의 효과를 기대할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.