Browse > Article
http://dx.doi.org/10.5806/AST.2012.25.5.292

Analysis of the composition of trail pheromone secreted from live Camponotus japonicus by HS-SPME GC/MS (HeadSpace-Solid Phase MicroExtraction Gas Chromatography/Mass Spectrometry)  

Park, Kyung-Eun (College of Pharmacy, Seoul National University)
Lee, Dong-Kyu (College of Pharmacy, Seoul National University)
Kwon, Sung Won (College of Pharmacy, Seoul National University)
Lee, Mi-Young (Occupational Safety and Health Research Institute, Korea Occupational Safety and Health Agency)
Publication Information
Analytical Science and Technology / v.25, no.5, 2012 , pp. 292-299 More about this Journal
Abstract
GC/MS has been utilized for many applications due to great resolution and reproducibility, which made it possible to build up the database of mass spectrum, while HS-SPME has the advantage of solventfree extraction of volatile compounds. The combination of these two methods, HS-SPME GC/MS, enabled many scientific applications with various possibilities. In this study, the analysis of trail pheromone excreted from live Camponotus japonicus with the feature of solvent-free extraction was carried out and the optimization for this analysis was performed. The major compounds detected were n-decane, n-undecane, and n-tridecane. Optimization for the best detection of these hydrocarbons was processed in the point of SPME parameter (selection of fiber, extraction temperature, extraction time, etc.). The advantage of the analysis of live sample is to analyze phenomenon right after it is excreted by ants. But the experimental process has restriction of extraction temperature and time because of the analysis of live ants. Establishing the process of HS-SPME GC/MS applied to live samples shown in this study can be a breakthrough for the ecofriendly and ethical research of live things.
Keywords
HS-SPME GC/MS; volatile organic compound; trail pheromone; live Camponotus japonicus;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 T. H. Jones, D. A. Clark, A. A. Edwards, D. W. Davidson, T. F. Spande and R. R. Snelling, J. Chem. Ecol., 30(8), 1479-1492 (2004).   DOI   ScienceOn
2 G. Janssens, Anal. Chim. Acta, 95(2), 153-159 (1977).   DOI   ScienceOn
3 R. B. Josens, W. M. Farina and F. Roces, J. Insect. Physiol., 44(7-8), 579-585 (1998).   DOI   ScienceOn
4 J. Lisec, N. Schauer, J. Kopka, L. Willmitzer and A. R. Fernie, Nat. Protocols, 1(1), 387-396 (2006).   DOI   ScienceOn
5 A. Kende, D. Portwood, A. Senior, M. Earll, E. Bolygo and M. Seymour, J. Chromatogr A, 1217(43), 6718- 6723 (2010).   DOI   ScienceOn
6 J. H. Kim, Anal. Sci. Technol, 24(2), 119-126 (2011).   DOI   ScienceOn
7 M. S. Yu, S. B. Yang and N.-K. Ha, J. Envir. Sci., 19(12), 1447-1454 (2010).   DOI   ScienceOn
8 M. N. Kayali-Sayadi, J. M. Bautista, D. Polo, amp, x, L. M. Ez and I. Salazar, J. Chromatogr B, 796(1), 55- 62 (2003).   DOI   ScienceOn
9 W. Miekisch, P. Fuchs, S. Kamysek, C. Neumann and J. K. Schubert, Clin. Chim. Acta, 395(1-2), 32-37 (2008).   DOI   ScienceOn
10 A. Mallouchos, M. Komaitis, A. Koutinas and M. Kanellaki, J. Agr. Food Chem., 50(13), 3840-3848 (2002).   DOI   ScienceOn
11 K. Fiedler, E. Schtz and S. Geh, Int. J. Hyg. Envir. Heal, 204(2-3), 111-121 (2001).   DOI   ScienceOn
12 C. A. Zini, F. Augusto, E. Christensen, E. B. Caramo and J. Pawliszyn, J. Agr. Food Chem, 50(25), 7199- 7205 (2002).   DOI   ScienceOn
13 B. D. Jackson and E. D. Morgan, Chemoecology, 4(3), 125-144 (1993).   DOI
14 Z. Liu, S. Yamane, Q. Wang and H. Yamamoto, J Ethol., 16(2), 57-65 (1998).   DOI
15 N. Fujiwara-Tsujii, N. Yamagata, T. Takeda, M. Mizunami and R. Yamaoka, Zool Sci., 23(4), 353-358 (2006).   DOI   ScienceOn
16 U. Haak, B. Hlldobler, H. J. Bestmann and F. Kern, Chemoecology, 7(2), 85-93 (1996).   DOI