본 논문에서는 계층적 KLT 특징 추적기의 하드웨어 구조를 제안한다. 계층적 KLT 특징 추적기(pyramidal Kanade-Lucas-Tomasi feature tracker)는 주로 MPU를 기반으로 구현되어 왔으나 반복연산 과정이 많아 실시간으로 처리하기 어려우므로, 실시간 수행을 위하여 FPGA(Field Programmable Gate Array)를 이용하여 구현하였다. 본 논문에서는 추출되는 특징점의 수를 일정하게 유지하기 위해 입력 영상의 밝기에 적응적으로 임계값을 설정하는 특징점 추출 알고리즘을 제안한다. 또한 계층적 KLT 추적 알고리즘을 메모리의 용량 및 대역폭의 한계를 극복하고, FPGA의 병렬처리 특성에 적합한 구조로 변환한다. 소프트웨어로 실행한 결과와의 비교를 통하여 특징점의 추출 및 추적이 유사한 양상으로 이루어짐을 검증하였고, $720{\times}480$ 영상 입력에 대해 초당 30 프레임의 full frame rate로 추적이 수행됨을 확인하였다.
본 논문은 마커리스 증강현실(Markerless Augmented Reality)의 구현과 레퍼런스(reference) 데이터 그룹을 효율적으로 생성하고 활용하는 방법을 제안한다. 구현은 카메라 설정과 레퍼런스 데이터 그룹 생성, 트래킹(tracking) 부분으로 되어 있다. 효율적인 레퍼런스 데이터 그룹을 생성하기 위해서는 CAD모델과 같은 3D모델을 필요하며, 다양한 관점에서 본 레퍼런스 데이터 그룹을 생성해야 한다. 모델에 대한 영상에서 특징점들을 추출하고, 광선 추적법을 이용하여 그 특징점에 대응하는 3D좌표를 추출하여, 모델의 특징점 들에 대한 2D/3D 대응점의 레퍼런스 데이터 그룹이 구성된다. 트래킹 할 때 현재 프레임영상에서 특징점 들이 가장 많이 매칭되는 레퍼런스 데이터와 그 주위의 모델 데이터만을 이용하기 때문에 빠르게 트래킹 할 수 있다.
일반적으로 QRS간격은 시작점을 기준으로 끝점까지의 간격을 말하지만 그 기준이 모호하고 Q와 S의 검출이 정확하지 않아 부정맥 분류 성능을 저하시키는 경우가 발생한다. 본 연구에서는 심전도신호 중 가장 큰 피크인 R파를 정확히 검출한 후 이를 기준으로 위상 변이 추적 기법을 적용하여 Q와 S의 시작점과 끝점을 추출하는 방법을 제안한다. 먼저 전처리 과정을 통해 잡음이 제거된 정확한 R파를 검출한다. 이후 심전도신호의 미분값을 통해 QRS패턴을 분류하고, R파를 기준으로 위상이 변화되는 방향과 횟수를 추적함으로써 Q, S의 시작점과 끝점을 추출하는 방법이다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 48개의 레코드를 대상으로 R파 검출율은 99.60%의 성능을 나타내었고, 위상 변이 추적 기법의 경우 조기심실수축(PVC)이 30개 이상 포함된 MIT-BIH 10개의 레코드를 대상으로 조기심실수축 분류율을 각각 비교 분석한 결과 94.12%로 우수하게 나타났다.
본 논문에서는 픽셀 연결성 추적을 이용한 의사 특징점 제거에 관하여 연구하였다. 특징점을 추출하는 방법에는 교차수를 이용한 방법이 있다. 그러나 교차수를 이용한 방법에서는 의사 특징점이 많이 추출된다. 교차수를 이용한 방법에서 잘못 추출된 특징점들을 제거하기 위하여 단점과 분기점 주위에 있는 8개 픽셀을 추적하여 조건을 만족하는 경우 실제 특징점으로 추출하고 조건을 만족하지 않는 경우 의사 특징점이므로 제거하였다. 성능 평가를 위하여 교차수를 이용한 방법과 픽셀 연결성 추적을 이용하여 추출된 실제 특징점을 비교하였으며, 실험결과 픽셀 연결성 추적을 이용하여 궁상문형, 와상문형, 제상문형에 대하여 의사특징점이 각각 47%, 40%, 30% 제거되었음을 알 수 있었다.
The size of a display is large, The form becoming various of that do not apply to previous methods of gaze tracking and if setup gaze-track-camera above display, can solve the problem of size or height of display. However, This method can not use of infrared illumination information of reflected cornea using previous methods. In this paper, Robust pupil detecting method for eye's occlusion, corner point of inner eye and center of pupil, and using the face pose information proposes a method for calculating the simply position of the gaze. In the proposed method, capture the frame for gaze tracking that according to position of person transform camera mode of wide or narrow angle. If detect the face exist in field of view(FOV) in wide mode of camera, transform narrow mode of camera calculating position of face. The frame captured in narrow mode of camera include gaze direction information of person in long distance. The method for calculating the gaze direction consist of face pose estimation and gaze direction calculating step. Face pose estimation is estimated by mapping between feature point of detected face and 3D model. To calculate gaze direction the first, perform ellipse detect using splitting from iris edge information of pupil and if occlusion of pupil, estimate position of pupil with deformable template. Then using center of pupil and corner point of inner eye, face pose information calculate gaze position at display. In the experiment, proposed gaze tracking algorithm in this paper solve the constraints that form of a display, to calculate effectively gaze direction of person in the long distance using single camera, demonstrate in experiments by distance.
최근 들어 영상처리는 여러 분야에서 사용되어지고 있다. 영상처리에서 많이 연구되어지고 있는 기술은 실시간으로 객체를 추적하는 기술이다. 객체를 추적하는 방법은 보행자를 추적하는 HOG(Histogram of Oriented Gradients), 전경과 배경 분리 방법을 사용하는 Codebook 같은 방법 들이 많이 알려져 있다. 그러나 객체가 움직이거나 동적인 배경, 조명변화가 심할 경우 객체 추출이 어려워진다. 본 논문에서는 ROI(Region of Interest)기반 깊이영상과 컬러영상의 특징을 이용해 객체를 추출하는 방법을 제안한다. 첫 번째, 깊이 영상에서 배경분리를 통해 객체의 위치를 찾아 ROI로 설정해준다. 두 번째, 컬러영상을 이용하여 영상의 특징점을 찾는다. 세 번째, 특징점과 객체의 볼록헐(convex hull) 구성점들을 이용하여 새로운 윤곽을 만들어 더 정확한 객체를 추출하도록 한다. 마지막으로 본 논문에서 제안한 방법과 기존 방법과의 비교를 통해 제안한 방법의 결과가 좀 더 정확한 객체를 추출하고 있음을 검증하였다.
다수의 2차원 객체 영상으로부터 3차원 형상을 복원하는 방법은 컴퓨터 비젼 분야에서 널리 연구되고 있다. 복원된 3차원 형상의 정확도 개선을 위해서는 잡음 영향을 줄이거나 영상 프레임 수를 확보하는 것이 무엇보다 중요하다. 그렇지만 특징점 추정 시 잡음은 잠재적으로 내포되고, 관측행렬을 구성하는 영상 프레임 수는 특징점 추적 실패, 장애요소 또는 낮은 해상력 등에 의해 일반적으로 감소하게 된다. 그래서 잠음 환경 하에 손실된 특징점을 보다 정확히 보정하여 사용 가능한 영상 프레임 수를 확보하는 것이 필수적이다. 따라서 우리는 잡음 분포 하에서 기하학적 특성을 이용해 손실 특징점의 오차 거리와 방향을 직접 제어할 수 있는 분석적 접근방법을 제안한다. 제안한 방법의 우수성은 합성과 실제 객체에 대한 실험 결과를 통해서 검증한다.
본 논문에서는 특징기반 물체추적을 위해 많이 사용되고 있는 KLT(Kanade-Lucas-Tomasi) 알고리즘을 소개하고, 이 알고리즘을 이용한 특징점(corner) 추출시, 영상에서 잡음의 영향이 KLT 알고리즘의 성능에 어떤 영향을 미치는지 잡음이 포함된 영상과 포함되지 않은 영상을 이용하여 안정된 특징점 추출을 위한 실험을 실시하고 비교 분석하였다.
본 논문에서는 연속된 프레임에서 특징점을 추출하고 특징점의 유사도를 Hough 공간에 누적하여 정확한 이동을 찾아내는 기법을 제시한다. 특징점은 예지의 시작점, 끝점, 분기점과 굴곡점을 사용한다. 정합을 위하여 특징점 주위의 평균 밝기, 굴곡점의 굴곡각을 이용하며, 물체 주위에 물체보다 특징이 강한 배경에 민감하지 않게 동작하기 위하여 Hough 공간상의 극대값들에 대하여, 분할 영역의 평균과 표준 편차를 비교함으로써 정확한 이동 경로를 산출한다. 제안하는 알고리즘을 실제 영상에 적응한 경우 배경의 특징이 매우 강한 경우 Hough 공간의 최대값을 찾는 기법이 해결할 수 없는 부분도 정확히 추적하는 결과를 보인다.
ln this paper, we consider to apply of 2-DOF (Degree of Freedom) PID controller at D.C servo motor system. Many control system use I-PD, PIB control system. but the position control system have difficulty in controling variable load and changing parameter We propose neural network 2-DOF PID control system having feature for removal disturbrances and tracking function in the target value point.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.