DOI QR코드

DOI QR Code

Detection of QRS Feature Based on Phase Transition Tracking for Premature Ventricular Contraction Classification

조기심실수축 분류를 위한 위상 변이 추적 기반의 QRS 특징점 검출

  • Cho, Ik-sung (Department of Information and Communication Engineering, Kyungwoon University) ;
  • Yoon, Jeong-oh (Department of Information and Communication Engineering, Kyungwoon University) ;
  • Kwon, Hyeog-soong (Department of IT Engineering, Pusan National University)
  • Received : 2015.10.15
  • Accepted : 2015.11.05
  • Published : 2016.02.29

Abstract

In general, QRS duration represent a distance of Q start and S end point. However, since criteria of QRS duration are vague and Q, S point is not detected accurately, arrhythmia classification performance can be reduced. In this paper, we propose extraction of Q, S start and end point RS feature based on phase transition tracking method after we detected R wave that is large peak of electrocardiogram(ECG) signal. For this purpose, we detected R wave, from noise-free ECG signal through the preprocessing method. Also, we classified QRS pattern through differentiation value of ECG signal and extracted Q, S start and end point by tracking direction and count of phase based on R wave. The performance of R wave detection is evaluated by using 48 record of MIT-BIH arrhythmia database. The achieved scores indicate the average detection rate of 99.60%. PVC classification is evaluated by using 9 record of MIT-BIH arrhythmia database that included over 30 premature ventricular contraction(PVC). The achieved scores indicate the average detection rate of 94.12% in PVC.

일반적으로 QRS간격은 시작점을 기준으로 끝점까지의 간격을 말하지만 그 기준이 모호하고 Q와 S의 검출이 정확하지 않아 부정맥 분류 성능을 저하시키는 경우가 발생한다. 본 연구에서는 심전도신호 중 가장 큰 피크인 R파를 정확히 검출한 후 이를 기준으로 위상 변이 추적 기법을 적용하여 Q와 S의 시작점과 끝점을 추출하는 방법을 제안한다. 먼저 전처리 과정을 통해 잡음이 제거된 정확한 R파를 검출한다. 이후 심전도신호의 미분값을 통해 QRS패턴을 분류하고, R파를 기준으로 위상이 변화되는 방향과 횟수를 추적함으로써 Q, S의 시작점과 끝점을 추출하는 방법이다. 제안한 방법의 우수성을 입증하기 위해 MIT-BIH 부정맥 데이터베이스 48개의 레코드를 대상으로 R파 검출율은 99.60%의 성능을 나타내었고, 위상 변이 추적 기법의 경우 조기심실수축(PVC)이 30개 이상 포함된 MIT-BIH 10개의 레코드를 대상으로 조기심실수축 분류율을 각각 비교 분석한 결과 94.12%로 우수하게 나타났다.

Keywords

References

  1. A. D. C. Chan, M. M. Hamdy, A. Badre, and V. Badee, "Wavelet distance measure for person identification using electrocardiograms," IEEE Trans. Instrum. Meas., vol. 57, no. 2, pp. 248-253, Feb. 2008. https://doi.org/10.1109/TIM.2007.909996
  2. S. Sangwatanaroj, S. Prechawat, B. Sunsaneewitayakul, S. Sitthisook, P. Tosukhowong, and K. Tungsanga, "New electrocardiographic leads and the procainamide test for the detection of the Brugada sign in sudden unexplained death syndrome survivors and their relatives," Eur. Heart J., vol. 22, no. 24, pp. 2290-2296, Dec. 2001. https://doi.org/10.1053/euhj.2001.2691
  3. J. W. Schleifer and K. Srivathsan, "Ventricular arrhythmias: State of the art," Cardiol. Clin., vol. 31, no. 4, pp. 595-605, November. 2013. https://doi.org/10.1016/j.ccl.2013.07.007
  4. Ince, T., Kiranyaz, S., Gabbouj, M, "Automated patient-specific classification of premature ventricular contractions," Proc. 30th Int. Conf. IEEE EMBS, 2008, pp. 5474-5477.
  5. S. Chauhan, A. S. Arora, and A. Kaul, "A survey of emerging biometric modalites," Procedia Comput. Sci., vol. 2, pp. 213-218, 2010. https://doi.org/10.1016/j.procs.2010.11.027
  6. O. Sayadi, M. B. Shamsollahi, and G. D. Clifford, "Robust detection of premature ventricular contractions using a ave-based Bayesian framework," IEEE Trans. Biomed. Eng., vol. 57, no. 2, pp. 353-362, Feb. 2010. https://doi.org/10.1109/TBME.2009.2031243
  7. Q. Li, C. Rajagopalan, and G. D. Clifford, "Ventricular fibrillation and tachycardia classification using a machine learning approach," vol. 61, no. 3, pp. 1607-1613, Jun. 2013.
  8. S. A. Israel, J. M. Irvine, A. Cheng, M. D. Wiederhold, and B. K. Wiederhold, "ECG to identify individuals," Pattern Recognit., vol. 38, no. 1,pp. 133-142, January. 2005. https://doi.org/10.1016/j.patcog.2004.05.014
  9. Erik Zellmer, Fei Shang, Hao Zhang "Highly Accurate ECG Beat Classfication based on Continuous Wavelet Transformation and Multiple Support Vector Machine Classifiers," Biomedical Engineering and Informatics Conference MMEI, 2009, pp. 1-5, 2009.
  10. Ik-Sung Cho, Hyeog-Soong Kwon, "Efficient QRS Detection and PVC Classification based on Profiling Method," Journal of KIICE, vol. 17, no. 4, 2013, pp.705-711.
  11. Ik-sung Cho et al., "Baseline Wander Removing Method Based on Morphological Filter for Efficient QRS Detection," Journal of KIICE, vol. 17, no. 1, 2013, pp.166-174.
  12. Faezipour. M. Saeed. A, Nourani. M, "Automated ECG profiling and beat classification," Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on, pp. 2198 - 2201, 2010.
  13. A. Gacek, ECG Signal processing, classification and interpretation: A comprehensive framework of computational intelligence: Springer, 2012.
  14. T. Azeem, M. Vassallo, and N. J. Samani, Rapid Review of ECG Interpretation: Manson Publishing, 2005.
  15. F. Morris, W. J. Brady, and J. Camm, ABC of clinical electrocardiography vol. 93: BMJ Books, 2009.
  16. J. Pan and W. J. Tompkins, "A real-time QRS detection algorithm," IEEE Trans. Biomed. Eng., vol. BME-32, no. 3, pp. 230-236, Mar. 1985. https://doi.org/10.1109/TBME.1985.325532

Cited by

  1. QRS구간 제거와 이동평균을 통한 대상 영역 추출 기반의 T파 검출 알고리즘 vol.21, pp.2, 2017, https://doi.org/10.6109/jkiice.2017.21.2.450
  2. 심전도신호 샘플링 주파수에 따른 R파 검출 최적 문턱치 설정 vol.21, pp.7, 2017, https://doi.org/10.6109/jkiice.2017.21.7.1420
  3. IoT 환경에서 최적 R파 검출 및 최소 특징점 추출을 통한 향상된 PVC 분류방법 vol.13, pp.4, 2016, https://doi.org/10.17662/ksdim.2017.13.4.091
  4. 최적 R파 검출 기반의 R피크 패턴과 RR간격을 통한 조기심실수축 분류 vol.22, pp.2, 2016, https://doi.org/10.6109/jkiice.2018.22.2.233