• Title/Summary/Keyword: Fault Recorder

Search Result 21, Processing Time 0.025 seconds

Design and Implementation of Fault Recorder for Transmission Line Protection (송전선로 보호용 고장기록장치의 설계 및 구현)

  • Choi, Soon-Choul;Park, Chul-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.3
    • /
    • pp.46-52
    • /
    • 2016
  • When a fault occurs on a transmission line, it is important to identify the fault location as speedily as possible for improvement of the power supply reliability. Generally, distance to fault location is estimated by off line from the recorded data. Conventional fault recorder uses the fault data at one end. This paper deals with the design of an advanced fault recorder for enhancement accuracy of the fault distance estimation and fast detection a fault occurrence position. The major emphasis of the paper will be on the description of the hardware and software of the fault recorder. The fault locator algorithm utilizes a GPS time-synchronized the fault data at both ends. The fault data is transmitted to the other side substation through communication. The advanced fault locator includes a Power module, MPU(Main Processing Unit) module, ADPU(Analog Digital Processing Unit) module, and SIU(Signal Interface Unit) modules. The MMI firmware and software of an advanced fault recording device was implemented.

Analysis of Progression of Transmission Line Fault by Fault Recorder Oscillograph (Fault Recorder 파형 분석을 통한 송전선로 고장 진전상황 분석)

  • Shim, Eung-Bo
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.525-526
    • /
    • 2011
  • 전력계통에서 발생하는 고장 중에는 고장 후의 결과만을 가지고는 어떻게 고장이 초기에 발생하여 진전되었는지를 추정하기가 어려운 고장이 간혹 발생한다. 본 고장 분석사례는 보호계전기의 동작사항과 고장기록장치의 파형을 이용하여 송전선로에서 고저항 지락에 의한 최초의 고장이 발생 할 수 있는 가능성과, 그 고장으로 인한 파급 고장 사례를 예시하였다. 과도현상 분석 프로그램인 EMTP (Electro-Magnetic Transient Program)를 이용하여 고장 사례를 재현하여 Fault Recorder 기록과의 유사성을 확인하였다.

  • PDF

Fault Current Discrimination of Power Line using FCM allowing self-organization (FCM에 기반한 자가생성 지도학습알고리즘을 이용한 전력선의 고장전류 판별)

  • Jeong, Jong-Won;Won, Tae-Hyun;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.368-369
    • /
    • 2011
  • This article suggests an online-based remote fault current mode discrimination method in order to identify the causes of the power line faults with various causes. For that, it refers to existing cause identification methods and categorizes modes by fault causes based on statistical techniques beforehand and performs the pretreatment process of fault currents by each cause acquired from the fault recorder into a topological plane in order to extract the characteristics of fault currents by each cause. After that, for the fault mode categorization, it discriminates modes by each cause using data by each cause as leaning data through utilizing RBF network based on FCM allowing self-organization in deciding the middle layer. And then it tests the validity of the suggested method as applying it to the data of the actual fault currents acquired from the fault recorder in the electric power transmission center.

  • PDF

Fault Current Discrimination of Power Line using Phase Space (위상평면을 이용한 전력선의 고장전류 판별)

  • Jeong, Jong-Won;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2009.04a
    • /
    • pp.86-88
    • /
    • 2009
  • This article suggests an online-based remote fault current mode discrimination method in order to identify the causes of the power line faults with various causes. For that, it refers to existing cause identification methods and categorizes modes by fault causes based on statistical techniques beforehand and performs the pre-treatment process of fault currents by each cause acquired from the fault recorder into a phase space in order to extract the characteristics of fault currents by each cause. After that, for the fault mode categorization, it discriminates modes by each cause using data by each cause as leaning data through utilizing RBF network. And then it tests the validity of the suggested method as applying it to the data of the actual fault currents acquired from the fault recorder in the electric power transmission center.

  • PDF

A Study on the Fault Current Discrimination Using Enhanced Fuzzy C-Means Clustering (개선된 퍼지 C-Means 클러스터링을 이용한 고장전류판별에 관한 연구)

  • Jeong, Jong-Won;Lee, Joon-Tark
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.11
    • /
    • pp.2102-2107
    • /
    • 2008
  • This paper demonstrates a enhanced FCM to identify the causes of ground faults in power distribution systems. The discrimination scheme which can automatically recognize the fault causes is proposed using Fuzzy RBF networks. By using the actual fault data, it is shown that the proposed method provides satisfactory results for identifying the fault causes.

Development of Crash Protected Memory for Event Recorder (Event Recorder를 위한 Crash Protected Memory 개발)

  • Song, Gyu-Youn;Lee, Sang-Nam;Ryu, Hee-Moon
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1068-1074
    • /
    • 2010
  • In high speed railway, event recorder is essential system for analyzing the cause of train accident. It stores train operation sent by train control system in safe memory unit. Crash protected memory, the safe memory unit for event recorder, keeps the stored contents from severe environment. For crash protected memory, we have designed the architecture of concrete enclosure and controller board. Proposed system provides large volume of memory capacity and fault tolerance architecture. For checking the characteristics of proposed crash protected memory specification, the simulation is executed. Simulation results shows the designed crash protected memory meets all requirements.

  • PDF

Two Terminals Numerical Algorithm for Distance Protection, Fault Location and Acing Faults Recognition Based on Synchronized Phasors

  • Lee Chan-Joo;Park Jong-Bae;Shin Joong-Rin;Radojevic Zoran
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.1
    • /
    • pp.35-41
    • /
    • 2006
  • This paper presents a new numerical algorithm for fault location estimation and for faults recognition based on the synchronized phasors. The proposed algorithm is based on the synchronized phasor measured from the synchronized PMUs installed at two-terminals of the transmission lines. In order to discriminate the fault type, the arc voltage wave shape is modeled numerically on the basis of a great number of arc voltage records obtained by transient recorder. From the calculated arc voltage amplitude it can make a decision whether the fault is permanent or transient. The results of the proposed algorithm testing through computer simulation are given.

Comparative Studies of Frequency Estimation Method for Fault Disturbance Recorder (고장 왜란 기록기를 위한 주파수 추정 기법의 비교 연구)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.87-92
    • /
    • 2012
  • Voltage and current phasor estimation has been executed by GPS-based synchronized PMU, which has become an important way of wide-area blackout protection for the prevention of expending faults in a power system. The PMU technique can not easily get the field data and it is impossible to share information, so that there has been used a FNET(Frequency Monitoring Network) method for the wide-area intelligent protection in USA. It consists of FDR(Fault Disturbance Recorder) and IMS(Information Management System). Therefore, FDR must provide an optimal frequency estimation method that is robust to noise and failure. In this paper, we present comparative studies for the frequency estimation method using IRDWT(Improved Recursive Discrete Wavelet Transform), FRDWT(Fast Recursive Discrete Wavelet Transform), and DFT(Discrete Fourier Transform). The Republic of Korea345[kV] power system modeling data by EMTP-RV are used to evaluate the performance of the proposed two kinds of RDWT(Recursive Discrete Wavelet Transform) and DFT. The simulation results show that the proposed frequency estimation technique using FRDWT could be the optimal frequency measurement method, and thus be applied to FDR.

An Improved Two-Terminal Numerical Algorithm of Fault Location Estimation and Arcing Fault Detection for Adaptive AutoReclosure (고속 적응자동재폐로를 위한 사고거리추정 및 사고판별에 관한 개선된 양단자 수치해석 알고리즘)

  • Lee, Chan-Joo;Kim, Hyun-Houng;Park, Jong-Bae;Shin, Joong-Rin;Radoievic, Zoran
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.11
    • /
    • pp.525-532
    • /
    • 2005
  • This paper presents a new two-terminal numerical algorithm for fault location estimation and for faults recognition using the synchronized phaser in time-domain. The proposed algorithm is also based on the synchronized voltage and current phasor measured from the assumed PMUs(Phasor Measurement Units) installed at both ends of the transmission lines. Also the arc voltage wave shape is modeled numerically on the basis of a great number of arc voltage records obtained by transient recorder. From the calculated arc voltage amplitude it can make a decision whether the fault is permanent or transient. In this paper the algorithm is given and estimated using DFT(discrete Fourier Transform) and the LES(Least Error Squares Method). The algorithm uses a very short data window and enables fast fault detection and classification for real-time transmission line protection. To test the validity of the proposed algorithm, the Electro-Magnetic Transient Program(EMTP/ATP) is used.

Identification of Arcing Fault and Development of An Adaptive Reclosing Technique about Arcing Ground Fault (아크지락사고에 대한 사고 판별 및 적응 재폐로 기법)

  • Kim, H.H.;Choo, S.H.;Chae, M.S.;Park, J.B.;Shin, J.R.
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.354-356
    • /
    • 2006
  • This paper presents a new one-terminal numerical algorithm for fault location estimation and for faults recognition. The proposed algorithm are derived for the case of most frequent single-phase line to ground fault in the time domain. The arc voltage wave shape is modeled numerically on the basis of a great number of arc voltage records obtained by transient recorder. From the calculated arc voltage amplitude it can make a decision whether the fault is permanent of transient. In this paper the algorithm uses a very short data window and enables fast fault detection and classification for real-time transmission line protection. To test the validity of the proposed algorithm the Electro-Magnetic Transient Program(EMTP/ATP) is used.

  • PDF