• Title/Summary/Keyword: Fast separation

Search Result 181, Processing Time 0.026 seconds

LOAD SHEDDING SIMULATION FOR MAINTAINING FREQUENCY STABILITY-GAS SEPARATION PLANT CASE (주파수 안정도 유지를 위한 부하차단 시뮬레이션-가스분리플랜트 사례)

  • Kim, Bong-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.72_73
    • /
    • 2009
  • The industrial power system has the radial plant distribution system and domestic generators to supply the essential loads. When the system is isolated from the utility tie line, the system frequency drops resulting in the trip of generators. The load shedding scheme shall be properly designed to secure the essential load. In this paper two kinds of load shedding schemes, those are, the Fast Act Load Shedding(FALS) and Under Frequency Load Shedding(UFLS) are simulated and compared taking an example of petrochemical gas separation plant.

  • PDF

Design of sub-optimal regulators for the large-scale stochastic system with time-scale separation properties (여러 시간스케일로 분리 가능한 대규모 스토캐스틱 시스템의 준 최적 조정기의 설계)

  • 이종효;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.550-553
    • /
    • 1986
  • This paper presents a procedure for the time-scale separation and a design method for the sub-optimal composite regulator and Kalman filter of the large-scale discrete stochastic system with two time-scale properties. Provided that the fast sub-system is asymptotically stable, the reduced-order regulator and Kalman filter for the slow sub-system with dominant modes is designed as a sub-optimal regulator for the system.

  • PDF

Development of Fast-Time Simulator for Aircraft Surface Operation (항공기 지상 이동 Fast-Time 시뮬레이터 개발)

  • Kim, Tae Young;Park, Bae-Seon;Lee, Hywonwoong;Lee, Hak-Tae
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Thisstudy presentsthe development of a fast-time airport surface simulator. The simulator usesthe output from a first-come first-served (FCFS) scheduler and has adopted one-dimensional dynamic model to simulate the movement of the aircraft on the surface. Higher collision risks situations in the airport surface traffic are analyzed to classify those situations into six cases. A conflict detection and resolution algorithm is implemented to maintain separation distance and to prevent deadlock. The simulator was tested with a scenario at the Incheon International Airport that contains 72 aircraft. Without the conflict detection and resolution, various conflict situations are identified. When the conflict detection and resolution algorithm is managing the traffic, it is confirmed that the conflicts are removed at the price of additional delays. In the conflict resolution algorithm, three prioritization strategies are implemented, and delayed aircraft count and average additional delays are compared. Prioritization based on remaining time or distance showed smaller total additional delay compared to choosing minimum delay priority for each situation.

Optimal output feedback design for discrete large scale systems with two time-scale separation properties

  • Jin, Jong-Sam;Kim, Soo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.203-208
    • /
    • 1987
  • Design problem of output feedback controllers for discrete large scale systems using simplified model is investigated. It is shown that neglecting fast modes does not generally guarantee the stability of the closed loop system. In this paper, the design procedure is proposed to stabilize the system by minimizing a quadratic cost function for the simplified model and a measure of stability for the neglected fast model.

  • PDF

Model Following Reconfigurable Flight Control System Design Using Direct Adaptive Scheme (직접 적응기법을 이용한 모델추종 재형상 비행제어시스템 설계)

  • 김기석;이금진;김유단
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.2
    • /
    • pp.99-106
    • /
    • 2003
  • A new reconfigurable model following flight control method based on direct adaptive scheme is presented. Using the timescale separation principle, both the inner-loop and the outer-loop states are controlled simultaneously. For the timescale separation assumption to be satisfied, the inner-loop model dynamics is set to be fast whereas the outer-loop model dynamics is set to be relatively slow. The stability and convergence of the proposed control law is proved by Lyapunov theorem. One of the merits of the proposed reconfigurable controller is that the FDI process and the persistent input excitation are not necessary, which is suitable for the flight control system. To evaluate the reconfiguration performance of the proposed control method, numerical simulation is performed using six degree-of-freedom nonlinear dynamics.

Blind Signal Separation Method using Hough Transform (Hough 변환을 이용한 암묵신호분리방법)

  • Lee, Haeng Woo
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.143-149
    • /
    • 2014
  • This paper is on the blind signal separation(BSS) method by the geometric method. To separate the signal sources, we use Hough transform and BSS. Hough transform is a geometric method which let us know the local informations of the signal. We find the orientations of signals by Hough transform and know the number of signal sources. When the number of sensors is more than the number of sources. the BSS algorithm can separate the mixtures well in the time domain. This algorithm has a good performance in converging fast. We had checked up the quality of the algorithm after separating the mixed signals. The results of simulations show that this BSS method has the abnormal waveforms due to unconverging coefficients in the beginning, and stably has the separated waveforms which almost equal to the sources in the most period.

Experimental study on bridge structural health monitoring using blind source separation method: arch bridge

  • Huang, Chaojun;Nagarajaiah, Satish
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.69-87
    • /
    • 2014
  • A new output only modal analysis method is developed in this paper. This method uses continuous wavelet transform to modify a popular blind source separation algorithm, second order blind identification (SOBI). The wavelet modified SOBI (WMSOBI) method replaces original time domain signal with selected time-frequency domain wavelet coefficients, which overcomes the shortcomings of SOBI. Both numerical and experimental studies on bridge models are carried out when there are limited number of sensors. Identified modal properties from WMSOBI are analyzed and compared with fast Fourier transform (FFT), SOBI and eigensystem realization algorithm (ERA). The comparison shows WMSOBI can identify as many results as FFT and ERA. Further case study of structural health monitoring (SHM) on an arch bridge verifies the capability to detect damages by combining WMSOBI with incomplete flexibility difference method.

Local Separation Principle of Fuzzy Observer-Controller (퍼지 관측기-제어기의 국소적 독립 원리)

  • Lee, Ho-Jae;Park, Jin-Bae;Joo, Young-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.902-906
    • /
    • 2004
  • A separation principle of the Takagj-Sugeno (T-S) fuzzy-model-based observer-control is investigated. When the premise variables are able to be measured or directly computed from the outputs of the T-S fuzzy system and the fuzzy inference rules for the plant, control, and observer share the premise parts, the T-S fuzzy-model-based observer and the T-S fuzzy-model-based control can be separately designed such that the global stabilizability is guaranteed by the fuzzy observer-based output-feedback control. In this case, the global separation principle is well established. On the other hand, when the premise variables are unmeasurable or cannot be computed from the outputs, they should also be estimated. We examine the separation principle of this case. If the decay rates of the T-S fuzzy-model-based control and observer are sufficiently fast, the global separation is assured. Otherwise we show that the separation principle holds locally.

Sound Source Localization and Separation for Emotional Robot (감성로봇을 위한 음원의 위치측정 및 분리)

  • 김경환;김연훈;곽윤근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.116-123
    • /
    • 2003
  • These days, the researches related with the emotional robots are actively investigated and in progress. And human language, expression, action etc. are merged in the emotional robot to understand the human emotion. However, there are so many sound sources and background noise around the robot, that the robots should be able to separate the mixture of these sound sources into the original sound sources, moreover to understand the meaning of voice of a specific person. Also they should be able to turn or move to the direction of a specific person to observe his expression or action effectively. Until now, the researches on the localization and separation of sound sources have been so theoretical and computative that real-time processing is hardly possible. In this reason for the practical emotional robot, fast computation should be realized by using simple principle. In this paper the methods for detecting the direction of sound sources by using the phase difference between peaks on spectrums, and the separating the sound sources by using fundamental frequency and its overtones of human voice, are proposed. Also by using these methods, it is shown that the effective and real-time localization and separation of sound sources in living room are possible.

DNA Separation Using Cellulose Derivatives and PEO by PDMS Microchip

  • Kang, Chung-mu;Back, Seung-Kwon;Song, In-gul;Choi, Byung-ok;Chang, Jun-keun;Cho, Keun-chang;Kim, Yong-seong
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.4
    • /
    • pp.519-523
    • /
    • 2006
  • Poly(dimethyl siloxane) (PDMS) has been employed as a microchip material for DNA separation in microfluidic condition. Different sieving molecules such as cellulose derivatives having glucose building block (methyl cellulose (MC), hydroxyethyl cellulose (HEC), and hydroxypropyl methyl cellulose (HPMC)) and polyethylene oxide (PEO) having linear (ring-opened ethylene oxide) unit were used and their performance was compared in terms of separation efficiency and resolution. In general, PEO showed better separation performance than cellulose derivatives probably due to the nature of linear shape polymer conformation. It was possible to perform at least 15 consecutive running with 1.2% PEO at the electric field strength around 200 V/cm. Fast analysis of the standard $\Phi$X 174 RF DNA/Hae III (less than 130s) was obtained with the number of the theoretical plate around 250,000/m. Our PMDS microchip was applied to the measurement of CAG repeat number, which is related to male infertile disease.