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(Abstract)

Design problem of output feedback controllers
for discrete large scale systems using simplified
model is investigated. It is shown that neglect-
ing fast modes does not generally guarantee the
stability of the closed loop system. In this
paper, the design procedure is proposed to stabi-
lize the system by minmizing a quadratic cost

function for the simplified model and a measure

of stability for the neglected fast model.

1. Introduction

Output feedback schemes offer an important
advantage in simplicity over using full state
feedback when successfully employed. In often
the case that all the state variables are not
directly available for forming feedback signals,
the use of output feedback schemes provides a
more easily implemented alternative to the use of
an observer or Kalman filter. Therefore, a lot
of work is currently being done on the develop-
ment and application of optimal output feedback
schemes. It is well known that a major difficulty
in designing output feedback system is to solve
a set of coupled non-linear matrix equation.

[1,2,3]

The large scale systems with time separation
property by the presence of slow and fast modes
give rise to ill~contioning in the dynamics,
rendering the necessary condition to obtain optimal
output feedback gain matrix quite difficult.
Moreover, it is often the case that the designer
does not have an accurate model for the high fre-
quency behavior of the plant. Thus it is common

practice to use a low frequency model for design

203

purposes.

In the case continuous systems, the singular

perturbation theory has been employed to separate
the design by the application of full state feed-
back. However, in the case of cutput feedback,

a two-part decomposition of the control design is
not possible unless very restrictive conditions
are placed on the structure of the output.[4]
Thus , we consider only a single-stage design
using the simplified low frequency model. 1In the
case where the high frequency model is open loop
stable, it is well known that state feedback
stabilization of the simplified model will guar-
antee the stability of the full order system.
(5,6]

Unfortunately, it has been known that in the case
of output feedback, stabilization of the simpli-
fied model will not guarantee the stability, even

if the high frequency dynamics are open loop

stable. [7,8]

In the case of discrete systems with time
separation property, we can obtain the similar
properties with continuous systems. That is, in
the case where high frequency model is open loop
stable, the application of state feedback schemes
for the simplified model does guarantee the stabi-
lity of the full system. [9]

On the orther hand, output feedback stabilization
of the simplified model does not guarantee the
stability even if the high frequency dynamics are

open loop stable. [10]

In this paper, we will propose a design

schemes in the discrete systems that it does guar-



antee the stability of the full system by minimiz-
ing a quadratic cost in the states and control for
the simplified system with an added term corresp-
onding to the square of the sum of eigenvalues for
the closed loop fast subsystem.

In most cases, the proposed design schemes will
offer the designer a means for compromising the
performance of the simplified system in return

for increasing a measure of stability for the

fast subsystem.

It will be shown through the

computer simulation.

2. Simplified Discrete Models and Problem
Formulation
Congider the linear, time-invariant discrete
system

X(K+1) = AX(K) + BU(K)
Y (K) CX(K)

(1a)
(1b)

where X(K)ERY, UK)ER™ and Y(K)ERP are the
state, control and output vectors respectively.
we assume that the pair (A,B) is completely con-

trollable, that is

n-1

rank[B AZBeverrovvr A (2)

Furthermore, we consider the system (1) is asymp-
totically stable which means that all the eigen-
values of the system matrix A have moduli strictly
less than one. In this paper, only the class of
discrete systems which possess the time separation
property is considered.

A simple characterization of this property is when
the eigenspectrum of A is composed of nj eigen-
values distributed near the unit circle and the

n, eigenvalues centered the origin in the complex
plane. In order to exhibit this time separation,
a suitable arrangement of the system (1) is often
required and this can be done through pemutation
and/or scaling of states.

With this arrangement,

the system (1) is transformed into

X {K+1)=41X (K)+4oX;, (K)+B U(K) (3a)
K2 (RK+1)=A3X; (K)+Ay X, (K)+B, U(K) (3b)
T(K) = CX (K) + CpXp(K) (3c)
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where X; (K) €R™ and X,(K)=R"*

The system (3) can be converted to the n,th order
simplified model using different methods like
block-diagonalization, quasi-steady-state and

modal aggregation. [11]

Xs(K+1) = AgXs5(K) + BoU(K) (4a)
Y(K) = CoXg(K) + DoU(K) (4b)
where
Ao = Ay + A2 (Ip-Ay) 7 Ag (5a)
B, = By + Ay (I,-44) B (5b)
Co = C1 + Gz (Ip-a.) A3 (5¢)
D, = Co (12-Ay) ™' By (5d)
1. is the identity matrix of order nj
3

The system (4) provides a first-order pertur-
bation to the first ny dominant eigenvalues and
the corresponding to the state and output trajec-
tories.

Also it gives a good approximation to the steady-
state behavior of the original system (1). We note
that in the model (4) the output y(k) is directly
influenced by the input U(k) through a feedback
matrix Dy which arises from the nj neglected non-
dominant modes.

In frequently encountered case, the smplified
model (4) is well known to the designer, but the
full order system is not.

Therefore the feedback schemes for the simplified
model are generally used.

We now introduce the constraint that the control

law has a linear output feedback form

U(K) = -FY(K) (6)

where F is an (mxp) constant feedback gain matrix
designed for the simplified model (4).

Substituting (6) into (4) we find that the colsed-

loop dynamics for the simplified model become
Xg(KH1) = WX(K), Xg(0) = Xgo )
where
-1
W=A, - B,(I+FDy) FCq (8)

o
under the assumption that (I+FDO) has full rank.

The stability of the full order system using the



simplified model can be stated by the following

lemma.

Lemma: For the output feedback control (6), the
necessary and sufficient conditions which the full

order system (3) is asymptotically stable are;

AW [<1 (9
|)\ (AL‘—BQFCz) |<1 (10)

From the above lemma, we can see that once the
feedback gain matrix is selected to ensure the
asymptotic stability of the closed loop dynamics
for the simpified system, then condition (9) is
always satisfied.

But it does not guarantee that

condition (10) is always satisfied.

3. Optimal Output Feedback Control

One approach to satisfying (9) is to for-
mulate a standard optimal feedback control problem
for the system (4), by defining a quadratic per-
formance index of the form

Tom F % 0 axg (04T (0 RUG) ) ay

where Q is positive semidefinite matrix and R is
positive definite matrix.

Substituting (6) into (4b) then
U(K) = —(I+FDy) ™" FC,Xg(K)=-FyCoXg (K) (12)

The necessary conditions for determining F, that
minimizes (11) are well known. [12]
The feedback matrix F can be determined from the

identity in (12) as
F = Fo(I-DyFo) ™ (13)

where (I-D,F,) has full rank iff (1+FD,) has full

rank. We now consider the condition (10). 1In the

case where B, or C, is zero, the condition (10)
is always satisfied.

But in the case where both of them are not zero,
it does not guarantee that the condition (10) is
always satisfied.

If the result is unsatisfactory, it becomes nece-
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ssary to impose a constraint regarding the eigen-
values of the fast subsystem. Since the minimiz-
ing (11) subject to the comnstraints regarding to
the all of the eigenvalues is quite intractible

problem, we choose instead to constrain the square

of the sum of eigenvalues sufficiently small.
This can most effectively be carried out by for-

mulating

J = Jo + Vy{tr(Ay-B,F(2) P24V,tr {FF1},v420 (14)

and solving for F* that minimizes J for increasing
values of v until the desired degree of stability
is reached.

The third term in (14) is added to avoid singular
solutions that would arise if (I—DOFO) lost full
rank.

Necessary conditions

In order to obtain the necessary condition, we
adopt the approach in [12, 13, 14] where a con-
strained dynamic optimization problem is converted
into a constrained static optimization problem.
This is done by recognizing that the performance in-

dex (l1) can be expressed as

T
so g0 (15)

Jo = X

where K satisfies the matrix Lyapunov equation.

G (Fy,K)=(Ag-BoF,Co) TR(A,-BoF Co) -K#8=0  (16)
§ = Q + C,TF,TRF C, (17)

Thus it can be summarized to the following problem
that obtain the necessary conditicns for minimiz-
ing

= tr{kXgoXgol} + Vi{tr(Ay-B,FCy) )2

+ Votr{FF'} (18)

with respect to F,F, and K subject to the constra-

int in (16) and the constraint
F = (I + FDy) Fg (19)

The necessary conditions are obtained by applying

gradient matrix operations to the Lagrangian



L= tr{KXSOXSOT} + Vl{tr(Au—BZFCZ)}Z

+ Votr{FF'} + tr{G(Fy,K)Ly )} + tr[{F-

(T4FD)F 11T (20)

where L, and L are Lagrange multipliers.
The necessary conditions follow from:

3L/3F, = 3£/3F = 3€/3K = 0 (21a)

38/3Ly = 3£/3L = O (21b)
Using the formulas

T T

atr{Nz}/3Z = N, 8tr{Nz"}/3Z = N (22a)

3tr{NzM}/3Z = NIMT (22b)

ser{nzMzT} /52 = NTzMT + Nz (22¢)

then the expression (21) can be expanded to give

Fo = Y5(Bo KBo+R) ' {28, TKAgLoC,  + (1+7D,) L)
(CoLoCo D ™ (23)
= (I-DoFo) ™" {(2V] tr(Aq-ByFCy)CyBy -
2V, FL) (24)

T
(A5=BoFoCo) Lo (ApBoFoCo) ™ = Lo + XszsoT=0
(25)

T T
(Bo=BoFoCo) TK(A B F Co) - K+QHCo Fo RF,Co=0
(26)

F = (I + FDY)F, (27)
The dependence of (25) on the initial condition
Xgo can be removed by minimizing E{J} with E{Xg,

Ty =
Xd} = 1.

T
Xgo by I.

This amounts to simply replacing Xg,

A computational methods

This section provides a computational procedure
for finding an F* that satisfies (23)-(27).

For V;=0, the usual necessary conditions for the
optimal feedback problem result in terms of F,,K
and L,

For Vi # 0, we have added constraint in (24) and
feedback gain matrix is given by (13) with the
underlying assumption throughout that (I-DgF,)
is invertible.

The solution for Vi = 0 can first be obtained.
Then, choosing some V, > 0, V; should be gradually

incremented, and a new solution obtained.

The computational procedure is as follows

0: Choose any FOO stabilizing the low frequency

model in the closed loop and set i=0

=

Solve (24) - (27) for k%,1i,,11 and ¥!, a11
functions of F%.

2: Solve, from (23), for the gradient

AFy = 5B, TRIB+R) T

]

{28,k A L, Te, T +
a+rip ) 'Ly (eorole, D™ -r (28)
3: Choose 0e(0,1] so that
J(Fb+atar, D) < 37 D =tr K+
VLt (Ay-BoFCp) 12 + Vo {FF 3

and set Fi+1 = Foi + aiAFOi

(29)

4: set i=i+l and go to 1.

Remarks

1) It is necessary to ensure that AO—BOFOiC0 is
stable at each iteration

2) If 0>0 R>0 then the unique and positive defi-
nite solutions for K1 and L% exist.

3) Unique solutions for Li and F1 exist if (I-
DOFoi) has full rank at each iteration.

4) If C2 or By is zero, then the eigenvalues of
the fast subsystem are unaffected by the choice

of F.

4. Computer Simulations and Discussion

Consider the following third-order system.

0.90 0.00 O0.10 1.00
X(K+1)=| -0.10 -0.30 0.00 | X(K)+ | -0.10 | U(K)
0.00 0.30 -0.23 ~-0.30

Y(K) = [-0.30 1.00 0.47] X(K)

Since the eigenvalues of the open loop system are

(0.89778, -0.32560, -0.20218), the system is time

separable to the first-order slow modes and second
~order fast modes.

The system matrix for the simplified model is;

Ao

0.898124, B, = 0.973735, Co = -0.385737,

Do

J0=k§0{x£(1<)q X (K) + UT(RRUK) I,

where Q=1 and R=0.0001
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~0.200360 and the performance index is selected



For Vi=0, then, the optimal output feedback

control for the simplified model is

U(K) 3.37Y(K)

Since the eigenvalues of the fast subsystem when

the feedback control is applied to the original

system (3) are (-1.15535, -0.33378), the full

order system is unstable.
The propsed algorithm is applied to make the un~-
stable system stable and the results are shown in

Fig. 1, 2 and 3

I\ (Ag-BoFqCo) |

1,5+
1.0+
0.5_—_’//,/
1 ' ! 1 ] | 1 [ v,
0 0.5 1o 15 2,0 25 3.0 3.5 4.0
Fig. 1. Absolute value of eigenvalues for
slow subsystem, v, =0,001
Ix (Ay-B,FC,
1.5+
1.0+
0.5
L 1 I ] 1 1 I 1 v
0 0.5 L0 1.5 2.0 2.5 3.0 3.5 4,0 1
Fig. 2. Absolute value of eigenvalues
for fast subsystem. v,=0.001
Jo
2.0
1.5
1.0
0.5
1 1 1 3 1 1 1 1 v
1
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Fig. 3. Degradation of slow subsystem
performance. v, =0.001
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We can recognize that the algorithm guarantees the
stability of fast subsystem by compromising the
results between low frequency performance and high
frequency stability.

As example, in the case of V= 2 and V,= 0.001,

A (Ag-BoFoCo) | = 0.4007, [A (A,~B,FC,)| = (0.6259,

0.3396), Jo = 1.1908 and F* = -1.80

5. Conclusion

In often the case, the designer has a good
model for the slow behavior of the system, and a
rough approximation for the fast behavior.

Thus the simplified models is used to describe the
dynamic behavior of large scale systems. There-
fore the basic problem using the simplified model
for output feedback control will guarantee the
stability of the closed loop original system. The
design procedure proposed in this paper allows
designer to trade-off between a measure for the

slow subsystem performance and the degree of

stability for the fast subsystem.
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