• Title/Summary/Keyword: Fas/FasL

Search Result 437, Processing Time 0.022 seconds

Improvement Effect of Non-alcoholic Fatty Liver Disease by Curcuma longa L. Extract (강황 추출물의 비알코올성 지방간 질환 개선 효과)

  • Lee, Young Seob;Lee, Dae Young;Kwon, Dong Yeul;Kang, Ok Hwa
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.4
    • /
    • pp.276-286
    • /
    • 2020
  • Background: Non-alcoholic fatty liver disease (NAFLD) is a chronic liver disease associated with multiple metabolic disorders. The medicinal plant Curcuma longa L. is widely distributed in Asia and has been used to treat a spectrum diseases in clinical practice. To date, there are inadequate reports of the effects of C. longa 50% EtOH extract (CE) on NAFLD. Therefore, in this study, we evaluate the CE on an NAFLD animal and elucidate the mechanism of action. Methods and Results: C57BL/6J mice fed a methionine-choline deficient diet (MCD) were treated with CE or milk thistle, and changes in inflammation and stetosis were assessed. Experimental animals were divided into six group (n = 10); Normal, MCD, MCD + CE 50 mg/kg/day (CE 50), MCD + CE 100 mg/kg/day (CE 100), MCD + CE 150 mg/kg/day (CE 150), and the Control, MCD + Milk thistle 150 mg/kg/day (MT 150). Body weight, liver weight, liver function, and histological changes were assessed in experimental animals. Quantitative real-time polymerase chain reaction and western blot analyses were performed on samples collected after 4 weeks of treatment. We observed that CE administration improved MCD-diet-induced lipid accumulation, and triglyceride (TG) and total cholesterol (TC) levels in serum. Treatment with CE also decreased hepatic lipogenesis through modulation of the sterol regulatory element binding protein-1 (SREBP-1), CCAAT-enhancer binding protein α (C/EBPα), fatty acid synthase (FAS), and peroxisome proliferator-activated receptor γ (PPARγ) expresion. In addition, the use of CE increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibited the up-regulation of toll-like receptor (TLR)-2 and TLR-4 signaling and the production of inflammatory mediators. Conclusions: In this report, we observed that CE regulated lipid accumulation in an MCD dietinduced NAFLD model by decreasing lipogenesis. These data suggeste that CE could effectively protect mice against MCD-induced NAFLD, by inhibiting the TLR-2 and TLR-4 signaling cascades.

Induction of Apoptosis by Ethanol Extract of Lythrum anceps (Koehne) Makino in Human Leukemia U937 Cells (인체백혈병 U937 세포에서 부처꽃 에탄올추출물에 의한 apoptosis 유도)

  • Jeong, Jin-Woo;Kim, Chul Hwan;Lee, Young-Kyung;Hwang, Yong;Lee, Ki Won;Choi, Kyung-Min;Kim, Jung Il
    • Korean Journal of Plant Resources
    • /
    • v.33 no.4
    • /
    • pp.279-286
    • /
    • 2020
  • Purple loosestrife-Lythrum anceps (Koehne) Makino is a herbaceous perennial plant belonging to the Lythraceae family. It has been used for centuries in Korea and other Asian traditional medicine. It has been showed pharmacological effects, including anti-oxidant and anti-microbial effects. However, the mechanisms underlying its anti-cancer effect are not yet understood. In this study, we investigated the mechanism of apoptosis signaling pathways by ethanol extract of Lythrum anceps (Koehne) Makino (ELM) in human leukemia U937 cells. Treatment with ELM significantly inhibited cell growth in a dose-dependent manner by inducing apoptosis, as evidenced by the formation of apoptotic bodies (ApoBDs), DNA fragmentation and increased populations of sub-G1 ratio. Induction of apoptosis by ELM was connected with up-regulation of death receptor (DR) 4 and DR5, pro-apoptotic Bax protein expression and down-regulation of anti-apoptotic Bcl-2 protein, and inhibitor of apoptosis protein (IAP) family proteins, depending on dosage. This induction was associated with Bid truncation, mitochondrial dysfunction, proteolytic activation of caspases (-3, -8 and -9) and cleavage of poly(ADP-ribose) polymerase protein. Therefore, our data indicate that ELM suppresses U937 cell growth by activating the intrinsic and extrinsic apoptosis pathways, and thus may have applications as a potential source for an anti-leukemic chemotherapeutic agent.

Kisspeptin-10 Enhanced Egg Production in Quails Associated with the Increase of Triglyceride Synthesis in Liver

  • Wu, J.;Fu, W.;Huang, Y.;Ni, Y.;Zhao, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.8
    • /
    • pp.1080-1088
    • /
    • 2013
  • Our previous results showed that kisspeptin-10 (Kp-10) injections via intraperitoneal (i.p.) once daily for three weeks notably promoted the egg laying rate in quails. In order to investigate the mechanism behind the effects of Kp-10 on enhancing the egg laying rate in birds, this study focused on the alternations of lipids synthesis in liver after Kp-10 injections. 75 female quails (22 d of age) were allocated to three groups randomly, and subjected to 0 (control, Con), 10 nmol (low dosage, L) and 100 nmol (high dosage, H) Kp-10 injections via i.p. once daily for three weeks, respectively. At d 52, quails were sacrificed and sampled for further analyses. Serum $E_2$ concentration was increased by Kp-10 injections, and reached statistical significance in H group. Serum triglyceride (TG) concentrations were increased by 46.7% in L group and 36.8% in H group, respectively, but did not reach statistical significance, and TG contents in liver were significantly elevated by Kp-10 injections in a dose-dependent manner. Serum total cholesterol (Tch) concentrations significantly decreased in H group, while in H group the hepatic Tch content was markedly increased. The level of non-esterified fatty acid (NEFA), apolipoprotein A1 and B (apoA1 and apoB) were not altered by Kp-10 injections. The genes expression of sterol regulatory element binding protein-1 (SREBP-1), fatty acid synthetase (FAS), apolipoprotein VLDL-II (apoVLDL-II), cholesterol $7{\alpha}$-hydroxylase (CYP7A1) and vitellogenin II (VTG-II) were significantly up-regulated by high but not low dosage of Kp-10 injection compared to the control group. However, the expression of SREBP-2, acetyl-CoA carboxylase ($ACC_{\alpha}$), malic enzyme (ME), stearoyl-CoA (${\Delta}9$) desaturase 1 (SCD1), apolipoprotein A1 (apoA1), fatty acid binding protein 2 (FABP2), 3-hydroxyl-3-methyl glutaryl-coenzyme A reductases (HMGCR), estrogen receptor ${\alpha}$, ${\beta}$($ER{\alpha}$ and ${\beta}$) mRNA were not affected by Kp-10 treatment. In line with hepatic mRNA abundance, hepatic SREBP1 protein content was significantly higher in H group. Although the mRNA expression was not altered, the content of $ER{\alpha}$ protein in liver was also significantly increased in H group. However, SREBP-2 protein content in liver was not changed by Kp-10 treatment. In conclusion, exogenous Kp-10 consecutive injections during juvenile stage significantly advanced the tempo of egg laying in quails, which was associated with the significant elevation in hepatic lipids synthesis and transport.

Effects of Sodium Butyrate, a Histone Deacetylase Inhibitor, on TRAIL-mediated Apoptosis in Human Bladder Cancer Cells (인체 방광암세포에서 histone deacetylase 억제제인 sodium butyrate이 TRAIL에 의한 apoptosis 유도에 미치는 영향)

  • Han, Min-Ho;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.431-438
    • /
    • 2016
  • The tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is considered a promising anticancer agent due to its unique ability to induce cancer cell death having only negligible effects on normal cells. However, many cancer cells tend to be resistant to TRAIL. In this study, we investigated the effects and molecular mechanisms of sodium butyrate (SB), a histone deacetylase inhibitor, in sensitizing TRAIL-induced apoptosis in 5637 human bladder cancer cells. Our results indicated that co-treatment with SB and TRAIL significantly increased the apoptosis induction, compared with treatment with either agent alone. Co-treatment with SB and TRAIL effectively increased the cell-surface expression of death receptor (DR) 5, but not DR4, which was associated with the inhibition of cellular Fas-associated death domain (FADD)-like interleukin-1β-converting enzyme (FLICE) inhibitory protein (c-FLIP). Furthermore, the activation of caspases (caspase-3, -8 and -9) and degradation of poly(ADP-ribose) were markedly increased in 5637 cells co-treated with SB and TRAIL; however, the synergistic effect was perfectly attenuated by caspase inhibitors. We also found that combined treatment with SB and TRAIL effectively induced the expression of pro-apoptotic Bax, cytosolic cytochrome c and cleave Bid to truncated Bid (tBid), along with down-regulation of anti-apoptotic Bcl-xL expression. These results collectively suggest that a combined regimen of SB plus TRAIL may offer an effective therapeutic strategy for safely and selectively treating TRAIL-resistant bladder cancer cells.

Inhibition of cell growth and induction of apoptosis by acacetin in FaDu human pharyngeal carcinoma cells

  • Kang, Kyeong-Rok;Kim, Jae-Sung;Kim, Tae-Hyeon;Seo, Jeong-Yeon;Park, Jong-Hyun;Lim, Jin Woong;Yu, Sun-Kyoung;Kim, Heung-Joong;Shin, Sang Hun;Park, Bo-Ram;Kim, Chun Sung;Kim, Do Kyung
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.107-114
    • /
    • 2020
  • Acacetin, which is present in damiana (Turnera diffusa) and black locust (Robinia pseudoacacia), has several pharmacologic activities such as antioxidant, anti-inflammatory, and anti-proliferative effects on cancer cells. However, the effect of acacetin on head and neck cancers has not been clearly established. This study aimed to examine the effects of acacetin on cell growth and apoptosis induction in FaDu human pharyngeal carcinoma cells. These were investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, Live/Dead cell assay, 4',6-diamidino-2-phenylindole dihydrochloride staining, caspase-3 and caspase-7 activation assay, and immunoblotting in FaDu cells. Acacetin induced FaDu cell death in a dose-dependent manner, with an estimated IC50 value of 41.9 µM, without affecting the viability of L-929 mouse fibroblasts as normal cells. Acacetin treatment resulted in nuclear condensation in the FaDu cells. It promoted the proteolytic cleavage of procaspase-3, -7, -8, and -9 with increasing amounts of the cleaved caspase isoforms in FaDu cells. Acacetin-induced apoptosis in FaDu cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting showed downregulation of the anti-apoptotic mitochondrial proteins Bcl-2 and Bcl-xL, but upregulation of the mitochondria-dependent pro-apoptotic proteins Bax and Badin FaDu cells after acacetin treatment. These findings indicate that acacetin inhibits cell proliferation and induces apoptotic cell death in FaDu human pharyngeal carcinoma cells via both the death receptor-mediated extrinsic apoptotic pathway and the mitochondria-mediated intrinsic apoptotic pathway.

Preliminary Studies on the Effects of Dietary Genetically Modified Soya and Corn on Growth Performance and Body Composition of Juvenile Olive Flounder(Paralichthys olivaceus) and Rockfish (Sebastes schlegeli)

  • Pham, Minh Anh;Nam, Yoon-Kwon;Kim, Sung-Hwean;Kim, Dong-Soo;Cho, Sung-Hwoan;Kim, Bong-Seok;Lee, Sang-Min
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.1
    • /
    • pp.63-70
    • /
    • 2010
  • Two feeding experiments were conducted to investigate the effects of dietary genetically modified (GM) soya and com on growth performance, feed utilization and body composition of juvenile olive flounder, Paralichthys olivaceus and rockfish, Sebastes schlegelii. For each fish species, four isonitrogenous (50% crude protein) and isocaloric (4.1 kcal/g) diets (designated as nGM soya, GM soya, nGM com and GM com) were formulated to contain 20% non-GM (nGM) and GM soya and com. Thirty olive flounder (initial body weight, 15.4${\pm}$0.4 g) and fifty rockfish (initial body weight, 3.1${\pm}$0.02 g) were distributed in each 400 L tank (200 L water) in a flow through system. Each experimental diet was fed to triplicate groups of fish to visual satiation, twice a day (9:00 hand 17:00 h) for 6 weeks. Growth performance was measured every three weeks. No effects of GM feedstuffs on survival were observed. Dietary inclusion of GM feedstuffs did not affect growth performance and feed utilization of fishes, except for rockfish fed GM com. Rockfish fed the GM com diet showed higher weight gain, daily feed intake and daily protein intake than did fish fed the nGM com diet, but no significant differences were observed in final body weight between the dietary treatments. Condition factor, hepatosomatic index, visceral somatic index and body composition were not altered by the inclusion of GM feedstuffs. These results indicate that dietary inclusion of GM soya and com could have no effects on growth performance and feed utilization of juvenile flounder and rockfish. Lower weight gain and feed intake in flounder and rockfish fed the diets containing 20% soya were likely due to anti-nutritional factors, rather than transgenic factors in the feedstuffs. Dietary inclusion of GM soya and com at the level tested did not alter the body composition of fishes. Further studies to investigate the effects of GM feedstuffs on health conditions and the development of fishes, as well as those of residue of transgenic fragments in ambient environments and in animals are necessary for safe use of the ingredients in aquaculture.

Anti-obese effects of mulberry (Morus alba L.) root bark through the inhibition of digestive enzymes and 3T3-L1 adipocyte differentiation (소화효소 저해 및 지방세포 분화 억제활성에 의한 상백피의 항비만 효능)

  • Wu, Yong-Xiang;Kim, You-Jeong;Li, Sha;Yun, Myung-Chul;Yoon, Jin-Mi;Kim, Jin-Young;Cho, Sung-Il;Son, Kun-Ho;Kim, Taewan
    • Food Science and Preservation
    • /
    • v.22 no.1
    • /
    • pp.27-35
    • /
    • 2015
  • Anti-obese effects of mulberry (Morus alba L.) root bark was investigated in vitro by measuring its inhibitory effect against 3T3-L1 preadipocyte differentiation and digestive enzymes such as ${\alpha}$-amylase, ${\alpha}$-glucosidase and pancreatic lipase. Ethanol extract of mulberry root bark (MRE) showed the potent inhibitory activities on ${\alpha}$-amylase, ${\alpha}$-glucosidase and pancreatic lipase with $IC_{50}$ values of $7.86{\pm}0.36$, $0.12{\pm}0.03$ and $7.93{\pm}0.11mg/mL$, respectively. Furthermore, MRE significantly suppressed cellular lipid accumulation in 3T3-L1 cells in a dose-dependent manner. To elucidate the mechanism of MRE, we performed qRT-PCR and Western blotting for the expression of genes related with adipogenesis and lipogenesis. Treatment of MRE markedly suppressed the protein expression of $PPAR{\gamma}$, $C/EBP{\alpha}$ and SREBP-1c, as well as FAS and ACC, which are the key transcription factors and metabolic enzymes in adipogenesis and lipogenesis. In addition, qRT-PCR analysis indicated that the anti-adipogenesis effect of MRE might be due to its inhibition at transcription levels. These results demonstrate that MRE can effectively suppress adipocyte differentiation and inhibit key enzymes related to obesity. Our findings suggest that mulberry root bark may have a potential benefit in preventing obesity.

Antioxidant and antiobesity activities of oral treatment with ethanol extract from sprout of evening primrose (Oenothera laciniata) in high fat diet-induced obese mice (달맞이순 (Oenothera laciniata) 에탄올 추출물 섭취가 고지방식이로 유도한 비만 마우스에서 항산화 및 비만억제효과)

  • Kwak, Chung Shil;Kim, Mi-Ju;Kim, Sun Gi;Park, Sunyeong;Kim, In Gyu;Kang, Heun Soo
    • Journal of Nutrition and Health
    • /
    • v.52 no.6
    • /
    • pp.529-539
    • /
    • 2019
  • Purpose: Sprouts of evening primrose (Oenothera laciniata, OL) were reported to have high contents of flavonoids and potent antioxidant activity. This study examined the antioxidant and antiobesity activities of OL sprouts to determine if they could be a natural health-beneficial resource preventing obesity and oxidative stress. Methods: OL sprouts were extracted with 50% ethanol, evaporated, and lyophilized (OLE). The in vitro antioxidant activity of OLE was examined using four different tests. The antiobesity activity and in vivo antioxidant activity from OLE consumption were examined using high fat diet-induced obese (DIO) C57BL/6 mice. Results: The IC50 for the 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging and superoxide dismutase (SOD)-like activities of OLE were 26.2 ㎍/mL and 327.6 ㎍/mL, respectively. OLE exhibited the ferric reducing antioxidant power (FRAP) activity of 56.7 ㎍ ascorbic acid eq./mL at 100 ㎍/mL, and an increased glutathione level by 65.1% at 200 ㎍/mL compared to the control in the hUC-MSC stem cells. In an animal study, oral treatment with 50 mg or 100 mg of OLE/kg body weight for 14 weeks reduced the body weight gain, visceral fat content, fat cell size, blood leptin, and triglyceride levels, as well as the atherogenic index compared to the high fat diet control group (HFC) (p < 0.05). The blood malondialdehyde (MDA) level and the catalase and SOD-1 activities in adipose tissue were reduced significantly by the OLE treatment compared to HFC as well (p < 0.05). In epididymal adipose tissue, the OLE treatment reduced the mRNA expression of leptin, PPAR-γ and FAS significantly (p < 0.05) compared to HFC while it increased adiponectin expression (p < 0.05). Conclusion: OLE consumption has potent antioxidant and antiobesity activities via the suppression of oxidative stress and lipogenesis in DIO mice. Therefore, OLE could be a good candidate as a natural resource to develop functional food products that prevent obesity and oxidative stress.

Inhibitory Effects of Chrysanthemum boreale Makino on 3T3-L1 Preadipocyte Differentiation and Down-regulation of Adipogenesis and Lipogenesis (산국(Chrysanthemum boreale Makino) 꽃 유래 에센셜오일(Essential oil)이 지방세포 분화 및 지방생성에 미치는 영향)

  • Hwang, Dae Il;Choi, In-Ho;Kim, Do Yoon;Park, Soo Min;Kim, Ha Bin;Li, YaLi;Lee, Hwan Myung
    • Journal of Life Science
    • /
    • v.29 no.3
    • /
    • pp.332-336
    • /
    • 2019
  • Obesity is associated with an increased risk of many diseases including type 2 diabetes mellitus, hypertension, and hyperlipidemia. The flowers of Chrysanthemum boreale have been used as traditional medicines for the treatment of diseases such as obesity and type 2 diabetes mellitus. This study aimed to evaluate the effect of C. boreale Makino flower essential oil (CFEO) on adipocyte differentiation using preadipocyte cell line 3T3-L1. CFEO at concentrations between 0.1 and $5{\mu}g/ml$ did not affect 3T3-L1 cell viability. A CFEO concentration of between 0.1 and $1{\mu}g/ml$ significantly inhibited lipid accumulation during MDI-induced differentiation in 3T3-L1 cells in a dose-dependent manner, reaching a maximal level at $1{\mu}g/ml$ ($28.94{\pm}2.01%$; approximately 30% of control treated with MDI alone). Western blot analysis revealed that CFEO concentrations between 0.1 and $1{\mu}g/ml$ suppressed the activations of three adipogenic transcription factors in the MDI-stimulated 3T3-L1 cells: peroxisome proliferator-activated receptor ${\gamma}$; CCATT/enhancer binding protein ${\alpha}$; and sterol regulatory element binding protein-1. Moreover, the expressions of lipogenic enzymes, acetyl-CoA carboxylase, and fatty acid synthase were also inhibited by treatment with CFEO between 0.1 and $1{\mu}g/ml$. CFEO may therefore be a promising functional material for obesity prevention.

Anti-obesity effect of Polygala tenuifolia (원지(Polygala tenuifolia)의 항비만 효과)

  • Hwang, Ju-Young;Wu, Yong-Xiang;Hwang, Dae-Il;Bae, Suk-Jae;Kim, Taewan
    • Food Science and Preservation
    • /
    • v.21 no.1
    • /
    • pp.97-106
    • /
    • 2014
  • This study was performed in order to investigate the anti-obesity effect of Polygala tenuifolia on lipid mechanism in 3T3-L1 adipocytes. The chemical composition of the P. tenuifolia was analyzed in order to assess its nutritional value. Total dietary fiber was the highest among the proximate component of the P. tenuifolia. These results showed that the P. tenuifolia may be used as a potential functional ingredient for anti-obesity effect. Intracellular lipid droplets in the adipocyte were stained with oil-red O dye and quantified. In comparison to the control, lipid accumulation was significantly decreased by 40.1% and 22.4% when treated with the water extract and 70% EtOH extract of the P. tenuifolia at the concentration of $10{\mu}g/mL$, respectively. The anti-adipogenic effect of the water extract was stronger than that of the 70% EtOH extract. The gene expression levels were measured via Western blot and real-time PCR. As a result, the water extract was found to have decrease the gene expression of SREBP-1c, PPAR, $C/EBP{\alpha}$, FAS, ACC in a dose-dependent manner. These indicate that the water extract inhibits pre-adipocyte differentiation and adipogenesis by blocking the SREBP-1c gene expression in 3T3-L1 cells. Therefore, P. tenuifolia can be used as an effective anti-obesity agent.