DOI QR코드

DOI QR Code

Inhibition of cell growth and induction of apoptosis by acacetin in FaDu human pharyngeal carcinoma cells

  • Kang, Kyeong-Rok (The Institute of Dental Science, Chosun University) ;
  • Kim, Jae-Sung (The Institute of Dental Science, Chosun University) ;
  • Kim, Tae-Hyeon (The Institute of Dental Science, Chosun University) ;
  • Seo, Jeong-Yeon (The Institute of Dental Science, Chosun University) ;
  • Park, Jong-Hyun (The Institute of Dental Science, Chosun University) ;
  • Lim, Jin Woong (The Institute of Dental Science, Chosun University) ;
  • Yu, Sun-Kyoung (The Institute of Dental Science, Chosun University) ;
  • Kim, Heung-Joong (The Institute of Dental Science, Chosun University) ;
  • Shin, Sang Hun (The Institute of Dental Science, Chosun University) ;
  • Park, Bo-Ram (Department of Dental Hygiene, College of Health and Welfare, Kyungwoon University) ;
  • Kim, Chun Sung (The Institute of Dental Science, Chosun University) ;
  • Kim, Do Kyung (The Institute of Dental Science, Chosun University)
  • Received : 2020.06.29
  • Accepted : 2020.08.21
  • Published : 2020.09.30

Abstract

Acacetin, which is present in damiana (Turnera diffusa) and black locust (Robinia pseudoacacia), has several pharmacologic activities such as antioxidant, anti-inflammatory, and anti-proliferative effects on cancer cells. However, the effect of acacetin on head and neck cancers has not been clearly established. This study aimed to examine the effects of acacetin on cell growth and apoptosis induction in FaDu human pharyngeal carcinoma cells. These were investigated by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide assay, Live/Dead cell assay, 4',6-diamidino-2-phenylindole dihydrochloride staining, caspase-3 and caspase-7 activation assay, and immunoblotting in FaDu cells. Acacetin induced FaDu cell death in a dose-dependent manner, with an estimated IC50 value of 41.9 µM, without affecting the viability of L-929 mouse fibroblasts as normal cells. Acacetin treatment resulted in nuclear condensation in the FaDu cells. It promoted the proteolytic cleavage of procaspase-3, -7, -8, and -9 with increasing amounts of the cleaved caspase isoforms in FaDu cells. Acacetin-induced apoptosis in FaDu cells was mediated by the expression of Fas and activation of caspase-8, caspase-3, and poly (ADP-ribose) polymerase. Immunoblotting showed downregulation of the anti-apoptotic mitochondrial proteins Bcl-2 and Bcl-xL, but upregulation of the mitochondria-dependent pro-apoptotic proteins Bax and Badin FaDu cells after acacetin treatment. These findings indicate that acacetin inhibits cell proliferation and induces apoptotic cell death in FaDu human pharyngeal carcinoma cells via both the death receptor-mediated extrinsic apoptotic pathway and the mitochondria-mediated intrinsic apoptotic pathway.

Keywords

References

  1. Warnakulasuriya S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol 2009;45:309-16. doi: 10.1016/j.oraloncology.2008.06.002.
  2. Kalavrezos N, Scully C. Mouth cancer for clinicians. Part 2: epidemiology. Dent Update 2015;42:354-6, 358-9. doi: 10.12968/denu.2015.42.4.354.
  3. Sun F, Li D, Wang C, Peng C, Zheng H, Wang X. Acacetininduced cell apoptosis in head and neck squamous cell carcinoma cells: evidence for the role of muscarinic M3 receptor. Phytother Res 2019;33:1551-61. doi: 10.1002/ptr.6343.
  4. Rettig EM, D'Souza G. Epidemiology of head and neck cancer. Surg Oncol Clin N Am 2015;24:379-96. doi: 10.1016/j.soc.2015.03.001.
  5. Pezzuto F, Buonaguro L, Caponigro F, Ionna F, Starita N, Annunziata C, Buonaguro FM, Tornesello ML. Update on head and neck cancer: current knowledge on epidemiology, risk factors, molecular features and novel therapies. Oncology 2015;89:125-36. doi: 10.1159/000381717.
  6. Kundu SK, Nestor M. Targeted therapy in head and neck cancer. Tumour Biol 2012;33:707-21. doi: 10.1007/s13277-012-0350-2.
  7. Sacks PG. Cell, tissue and organ culture as in vitro models to study the biology of squamous cell carcinomas of the head and neck. Cancer Metastasis Rev 1996;15:27-51. doi: 10.1007/BF00049486.
  8. Todd R, Donoff RB, Wong DT. The molecular biology of oral carcinogenesis: toward a tumor progression model. J Oral Maxillofac Surg 1997;55:613-23; discussion 623-5. doi: 10.1016/s0278-2391(97)90495-x.
  9. Links M, Lewis C. Chemoprotectants: a review of their clinical pharmacology and therapeutic efficacy. Drugs 1999;57:293-308. doi: 10.2165/00003495-199957030-00003.
  10. Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309-12. doi: 10.1126/science.281.5381.1309.
  11. Hengartner MO. The biochemistry of apoptosis. Nature 2000;407:770-6. doi: 10.1038/35037710.
  12. Kaufmann SH, Hengartner MO. Programmed cell death: alive and well in the new millennium. Trends Cell Biol 2001;11:526-34. doi: 10.1016/s0962-8924(01)02173-0.
  13. Cohen GM. Caspases: the executioners of apoptosis. Biochem J 1997;326(Pt 1):1-16. doi: 10.1042/bj3260001.
  14. Hu W, Kavanagh JJ. Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 2003;4:721-9. doi: 10.1016/s1470-2045(03)01277-4.
  15. Jeong KI, Kim SG, Go DS, Kim DK. Inhibition of cell growth and induction of apoptosis by bilobalide in FaDu human pharyngeal squamous cell carcinoma. Int J Oral Biol 2020;45:8-14. doi: 10.11620/IJOB.2020.45.1.8.
  16. Kaufmann SH, Earnshaw WC. Induction of apoptosis by cancer chemotherapy. Exp Cell Res 2000;256:42-9. doi: 10.1006/excr.2000.4838.
  17. Reed JC. Apoptosis-regulating proteins as targets for drug discovery. Trends Mol Med 2001;7:314-9. doi: 10.1016/s1471-4914(01)02026-3.
  18. Punia R, Raina K, Agarwal R, Singh RP. Acacetin enhances the therapeutic efficacy of doxorubicin in non-small-cell lung carcinoma cells. PLoS One 2017;12:e0182870. doi: 10.1371/journal.pone.0182870.
  19. Bhat TA, Nambiar D, Tailor D, Pal A, Agarwal R, Singh RP. Acacetin inhibits in vitro and in vivo angiogenesis and downregulates Stat signaling and VEGF expression. Cancer Prev Res (Phila) 2013;6:1128-39. doi: 10.1158/1940-6207.CAPR-13-0209.
  20. Pal HC, Hunt KM, Diamond A, Elmets CA, Afaq F. Phytochemicals for the management of melanoma. Mini Rev Med Chem 2016;16:953-79. doi: 10.2174/1389557516666160211120157.
  21. Cho JH, Kim SG, Park BS, Go DS, Park JC, Kim DK. MicroRNA-27 promotes odontoblast differentiation via Wnt1 signaling. Int J Oral Biol 2015;40:197-204. doi: 10.11620/IJOB.2015.40.4.197.
  22. Herrnring C, Reimer T, Jeschke U, Makovitzky J, Kruger K, Gerber B, Kabelitz D, Friese K. Expression of the apoptosisinducing ligands FasL and TRAIL in malignant and benign human breast tumors. Histochem Cell Biol 2000;113:189-94. doi: 10.1007/s004180050438.
  23. Li HJ, Wang CY, Mi Y, Du CG, Cao GF, Sun XC, Liu DJ, Shorgan B. FasL-induced apoptosis in bovine oocytes via the Bax signal. Theriogenology 2013;80:248-55. doi: 10.1016/j.theriogenology.2013.04.002.
  24. Tian Z, Chen S, Zhang Y, Huang M, Shi L, Huang F, Fong C, Yang M, Xiao P. The cytotoxicity of naturally occurring styryl lactones. Phytomedicine 2006;13:181-6. doi: 10.1016/j.phymed.2004.07.010.
  25. Datta R, Kojima H, Yoshida K, Kufe D. Caspase-3-mediated cleavage of protein kinase C theta in induction of apoptosis. J Biol Chem 1997;272:20317-20. doi: 10.1074/jbc.272.33.20317.
  26. Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997;89:175-84. doi: 10.1016/s0092-8674(00)80197-x.
  27. Yang SJ, Lee SA, Park MG, Kim JS, Yu SK, Kim CS, Kim JS, Kim SG, Oh JS, Kim HJ, Chun HS, Kim YH, Kim DK. Induction of apoptosis by diphenyldifluoroketone in osteogenic sarcoma cells is associated with activation of caspases. Oncol Rep 2014;31:2286-92. doi: 10.3892/or.2014.3066.
  28. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997;275:1132-6. doi: 10.1126/science.275.5303.1132.
  29. Kluck RM, Esposti MD, Perkins G, Renken C, Kuwana T, Bossy-Wetzel E, Goldberg M, Allen T, Barber MJ, Green DR, Newmeyer DD. The pro-apoptotic proteins, Bid and Bax, cause a limited permeabilization of the mitochondrial outer membrane that is enhanced by cytosol. J Cell Biol 1999;147:809-22. doi: 10.1083/jcb.147.4.809.