• Title/Summary/Keyword: Family function and role

Search Result 279, Processing Time 0.028 seconds

Microtubule-associated Protein 1B Interacts with Glyceraldehydes 3-Phosphate Dehydrogenase in Bovine Follicles (한우 난포에서 발현하는 MAP1B와 GAPDH의 상호 결합)

  • Choe, Changyong;Han, Jaehee;Kang, Dawon
    • Journal of Embryo Transfer
    • /
    • v.28 no.1
    • /
    • pp.57-61
    • /
    • 2013
  • Microtubule-associated protein 1B (MAP1B), a member of MAP1 family, plays a key role in neuronal development. MAP1B binds to many kinds of proteins directly or indirectly. This study was performed to investigate whether MAP1B interacts with GAPDH in bovine follicles using immunoprecipitation (IP) with Western blot analysis and immunohistochemisty. The mRNA expressions of MAP1B and glyceraldehydes 3-phosphate dehydrogenase (GAPDH) were down-regulated in bovine follicular cystic follicles (FCF). In parallel with the mRNA levels, their protein levels were also down-regulated in FCFs. In addition, MAP1B and GAPDH were co-localized at the cytoplasm of follicles. IP with Western blot analysis showed that MAP1B bound to GAPDH in normal follicles, but their binding was absent in FCFs, suggesting a low level of MAP1B and/or GAPDH expressions in FCFs. Taken together, these results suggest that MAP1B interacted with GAPDH may play a role in bovine follicle development, and that GAPDH does not function always as a loading control in bovine follicles.

Characterization of ERp29 and ADP-Ribosylation Factor 5 Interaction (ERp29와 ADP-ribosylation factor 5의 결합특성)

  • Kwon, Ki-Sang;Seog, Dae-Hyun;Kim, Seung-Whan;Yu, Kweon;Kwon, O-Yu
    • Journal of Life Science
    • /
    • v.21 no.4
    • /
    • pp.613-615
    • /
    • 2011
  • ERp29 is a endoplasmic reticulum (ER) lumenal resident protein that shows sequence similarity to the protein disulfide isomerase family. Its biological function is thought to play a role in the processing of secretory proteins within the ER, possibly by participating in the folding of proteins in the ER. Although some data on ERp29 have been reported, its normal functions are still unclear. To gain insights into the function of ERp29, we identified ARF5 protein as a protein that interacts with ERp29 using yeast two-hybrid screening and GST pull-down assay. Interaction between ERp29 and ARF5 was detected under normal cell conditions but not under ER stress conditions. This result may provide a clue for understanding ERp29 biological functions.

A Study on Chair Design for User's Interpersonal Exchange of Emotion - Focused on Chair Structure and Function - (이용자 상호간 감성교류를 위한 의자디자인 연구 - 의자의 구조와 기능을 중심으로 -)

  • Kim, Kyung-Won
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.2
    • /
    • pp.157-166
    • /
    • 2010
  • Furniture in the modern living environment, inclusive the importance of its practical value, is a plastic element of indoor space, and its artistic value also holds an important position. Moreover, emotional design based on the emotional engineering in a structural change of modern society such as urbanization, small family, aging society is proposed as an important keyword in the modern design. Namely, furniture as an component of modern residential space has been advanced as a human-oriented environmental element considering people's emotional and mental value to the functional satisfaction and artistic and emotional satisfaction. Furniture is a living tool that is much contacted to people, which affects highly on people's body and mind. This means that people's volition action can be naturally induced by furniture design, and that furniture can display a role as an active tool of means to make people's interpersonal communication and interchange. Namely, I think furniture design of emotional interchange that understands furniture user's pattern behavior and pattern, and observes furniture form and structure and functionality on users' relationship affecting on people's emotional stability and interpersonal interchange of emotion, as an indispensable element necessary for producing more human and prosperous environment of life.

  • PDF

The Effects of Perceived Parental Acceptance on Social Anxiety and Depressive Symptoms in Children: Examining Gender-Moderating Effects (수용적 부모양육이 아동의 사회불안 및 우울증상에 미치는 영향: 성별조절효과를 통한 분석)

  • Chung, Moon-Ja;Yuh, Jong-Il
    • Journal of the Korean Home Economics Association
    • /
    • v.48 no.9
    • /
    • pp.103-111
    • /
    • 2010
  • The purpose of this study was to investigate the effects of perceived parental acceptance on social anxiety and depressive symptoms in children. Seven hundred and thirty eight 5th and 6th graders completed questionnaires. Regression analyses indicated that low levels of paternal acceptance was associated with higher social anxiety and depressive symptoms. Gender was a moderator of the effects of maternal acceptance on social anxiety and depressive symptoms. With high levels of maternal acceptance, girls were significantly less likely to report social anxiety and depressive symptoms, compared to boys. These results highlight the important role of parental acceptance in manifestations of social anxiety and depressive symptoms and clarify the relation of maternal acceptance to social anxiety and depressive symptoms as a function of gender.

Expression and Function of CTNNB1 in the Development of Avian Reproductive System

  • Bae, Seung-Min;Song, Gwonhwa
    • Reproductive and Developmental Biology
    • /
    • v.38 no.1
    • /
    • pp.35-40
    • /
    • 2014
  • Beta-catenin (CTNNB1, catenin (cadherin-associated protein), beta 1) is involved in various biological processes, including embryogenesis, tumorigenesis, angiogenesis and progression of metastasis. CTNNB1, as a multifunctional and oncogenic protein, has important roles in adhesion between Sertoli cells through an N-cadherin-dependent manner and in various cancer types through its over-activation. In addition, CTNNB1 can interact with estrogen/estrogen receptor alpha complex, which regulates the transcription of WNT (wingless-type MMTV integration site family)/CTNNB1 target genes. Recently, we investigated the functional roles and expression pattern of CTNNB1 during the morphological changes of embryonic gonads of chickens and the estrogen-dependent regulation of CTNNB1 in oviduct development and potential functions as a biomarker of CTNNB1 in human epithelial ovarian cancer using the chicken as a biological research model. Therefore, in this review, we provide a new insight of potential role of CTNNB1 in the development of the female reproductive tract during early embryogenesis and ovarian carcinogenesis of laying hen models.

Histone Deactylase Inhibitors as Novel Target for Cancer, Diabetes, and Inflammation

  • Singh, Parul;Madhavan, Thirumurthy
    • Journal of Integrative Natural Science
    • /
    • v.6 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • Histone deacetylase (HDACs) is an enzyme family that deacetylates histones and non-histones protein. Availability of crystal structure of HDAC8 has been a boosting factor to generate target based inhibitors. Hydroxamic class is the most studied one to generate potent inhibitors. HDAC class I and class II enzymes are emerging as a therapeutic target for cancer, diabetes, inflammation and other diseases. DNA methylation and histone modification are epigenetic mechanism, is important for the regulation of cellular functions. HDACs enzymes play essential role in gene transcription to regulate cell proliferation, migration and death. The aim of this article is to provide a comprehensive overview about structure and function of HDACs enzymes, histone deacetylase inhibitors (HDACi) and HDACs enzymes as a therapeutic target for cancer, inflammation and diabetes.

Microbial 2-Cys Peroxiredoxins: Insights into Their Complex Physiological Roles

  • Toledano, Michel B.;Huang, Bo
    • Molecules and Cells
    • /
    • v.39 no.1
    • /
    • pp.31-39
    • /
    • 2016
  • The peroxiredoxins (Prxs) constitute a very large and highly conserved family of thiol-based peroxidases that has been discovered only very recently. We consider here these enzymes through the angle of their discovery, and of some features of their molecular and physiological functions, focusing on complex phenotypes of the gene mutations of the 2-Cys Prxs subtype in yeast. As scavengers of the low levels of $H_2O_2$ and as $H_2O_2$ receptors and transducers, 2-Cys Prxs have been highly instrumental to understand the biological impact of $H_2O_2$, and in particular its signaling function. 2-Cys Prxs can also become potent chaperone holdases, and unveiling the in vivo relevance of this function, which is still not established, should further increase our knowledge of the biological impact and toxicity of $H_2O_2$. The diverse molecular functions of 2-Cys Prx explain the often-hard task of relating them to peroxiredoxin genes phenotypes, which underscores the pleiotropic physiological role of these enzymes and complex biologic impact of $H_2O_2$.

Transmuted new generalized Weibull distribution for lifetime modeling

  • Khan, Muhammad Shuaib;King, Robert;Hudson, Irene Lena
    • Communications for Statistical Applications and Methods
    • /
    • v.23 no.5
    • /
    • pp.363-383
    • /
    • 2016
  • The Weibull family of lifetime distributions play a fundamental role in reliability engineering and life testing problems. This paper investigates the potential usefulness of transmuted new generalized Weibull (TNGW) distribution for modeling lifetime data. This distribution is an important competitive model that contains twenty-three lifetime distributions as special cases. We can obtain the TNGW distribution using the quadratic rank transmutation map (QRTM) technique. We derive the analytical shapes of the density and hazard functions for graphical illustrations. In addition, we explore some mathematical properties of the TNGW model including expressions for the quantile function, moments, entropies, mean deviation, Bonferroni and Lorenz curves and the moments of order statistics. The method of maximum likelihood is used to estimate the model parameters. Finally the applicability of the TNGW model is presented using nicotine in cigarettes data for illustration.

Detection of similar GPCRs by using protein secondary structures

  • Ku, Ja-Hyo;Yoon, Young-Woo
    • 한국정보컨버전스학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.39-42
    • /
    • 2008
  • G protein-coupled receptor(GPCR) family is a cell membrane protein, and plays an important role in a signaling mechanism which transmits external signals through cell membranes into cells. Now, it is estimated that there may be about 800-1000 GPCRs in a human genome. But, GPCRs each are known to have various complex control mechanisms and very unique signaling mechanisms. GPCRs are involved in maintaining homeostasis of various human systems including an endocrine system or a neural system and thus, disorders in activity control of GPCRs are thought to be the major source of cardiovascular disorders, metabolic disorders, degenerative disorders, carcinogenesis and the like. As more than 60% of currently marketed therapeutic agents target GPCRs, the GPCR field has been actively explored in the pharmaceutical industry. Structural features, and class and subfamily of GPCRs are well known by function, and accordingly, the most fundamental work in studies identifying the previous GPCRs is to classify the GPCRs with given protein sequences. Studies for classifying previously identified GPCRs more easily with mathematical models have been mainly going on. Considering that secondary sequences of proteins, namely, secondary binding structures of amino acids constituting proteins are closely related to functions, the present paper does not place the focus on primary sequences of proteins as previously practiced, but instead, proposes a method to transform primary sequences into secondary structures and compare the secondary structures, and then detect an unknown GPCR assumed to have a same function in databases of previously identified GPCRs.

  • PDF

Regulatory Roles of MAPK Phosphatases in Cancer

  • Heng Boon Low;Yongliang Zhang
    • IMMUNE NETWORK
    • /
    • v.16 no.2
    • /
    • pp.85-98
    • /
    • 2016
  • The mitogen-activated protein kinases (MAPKs) are key regulators of cell growth and survival in physiological and pathological processes. Aberrant MAPK signaling plays a critical role in the development and progression of human cancer, as well as in determining responses to cancer treatment. The MAPK phosphatases (MKPs), also known as dual-specificity phosphatases (DUSPs), are a family of proteins that function as major negative regulators of MAPK activities in mammalian cells. Studies using mice deficient in specific MKPs including MKP1/DUSP1, PAC-1/DUSP2, MKP2/DUSP4, MKP5/DUSP10 and MKP7/DUSP16 demonstrated that these molecules are important not only for both innate and adaptive immune responses, but also for metabolic homeostasis. In addition, the consequences of the gain or loss of function of the MKPs in normal and malignant tissues have highlighted the importance of these phosphatases in the pathogenesis of cancers. The involvement of the MKPs in resistance to cancer therapy has also gained prominence, making the MKPs a potential target for anti-cancer therapy. This review will summarize the current knowledge of the MKPs in cancer development, progression and treatment outcomes.