Browse > Article
http://dx.doi.org/10.13160/ricns.2013.6.1.057

Histone Deactylase Inhibitors as Novel Target for Cancer, Diabetes, and Inflammation  

Singh, Parul (Department of Bioinformatics, SRM University)
Madhavan, Thirumurthy (Department of Bioinformatics, SRM University)
Publication Information
Journal of Integrative Natural Science / v.6, no.1, 2013 , pp. 57-63 More about this Journal
Abstract
Histone deacetylase (HDACs) is an enzyme family that deacetylates histones and non-histones protein. Availability of crystal structure of HDAC8 has been a boosting factor to generate target based inhibitors. Hydroxamic class is the most studied one to generate potent inhibitors. HDAC class I and class II enzymes are emerging as a therapeutic target for cancer, diabetes, inflammation and other diseases. DNA methylation and histone modification are epigenetic mechanism, is important for the regulation of cellular functions. HDACs enzymes play essential role in gene transcription to regulate cell proliferation, migration and death. The aim of this article is to provide a comprehensive overview about structure and function of HDACs enzymes, histone deacetylase inhibitors (HDACi) and HDACs enzymes as a therapeutic target for cancer, inflammation and diabetes.
Keywords
HDACs; Enzymes; Inhibitors; Cancer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Haberland, M. H. Mokalled, R. L. Montgomery, and E. N. Olson, "Epigenetic control of skull morphogenesis by histone deacetylase 8", Gene. Dev., Vol. 23, pp 1625-1630, 2009.   DOI   ScienceOn
2 M. Dokmanovic and P. A. Marks, "Prospects: histone deacetylase inhibitors", J. Cell. Biochem., Vol. 96, pp. 293-304, 2005.   DOI   ScienceOn
3 B. E. Morrison, N. Majdzadeh, and S. R. D. Mello, "Histone deacetylases: Focus on the nervous system", Cell. Mol. Life Sci., Vol. 64, pp. 2258-2269, 2007.   DOI
4 T. A. McKinsey, "Isoform-selective HDAC inhibitors: Closing in on translational medicine for the heart", J. Mol. Cell. Cardiol., Vol. 51, pp. 491-496, 2011.   DOI   ScienceOn
5 D. M. Fass, S. A. Reis, B. Ghosh, K. M. Hennig, N. F. Joseph d, W. N. Zhao, T. J.F. Nieland, J. S. Guan, C. E. G. Kuhnle, W. Tang, D. D. Barker, R. Mazitschek, S. L. Schreiber, L. H. Tsai, and S. J. H. Crebinostat, "A novel cognitive enhancer that inhibits histone deacetylase activity and modulates chromatin-mediated neuroplasticity", Neuropharmacology, Vol. 64, pp. 81-96, 2013.   DOI   ScienceOn
6 X. Wanga, X. Weia, Q. Pangb, and F. Yia, "Histone deacetylases and their inhibitors: molecular mechanisms and therapeutic implications in diabetes mellitus", Acta Pharmaceutica Sinica B, Vol. 2, pp. 387-395, 2012.   DOI   ScienceOn
7 T. Suzuki, A. Matsuura, A. Kouketsu, H. Nakagawa, and N. Miyata, "Identification of a potent nonhydroxamate histone deacetylase inhibitor by mechanism-based drug design", Bioorg. Med. Chem. Lett., Vol. 15, pp. 331-335, 2005.   DOI   ScienceOn
8 M. R. Shakespear, M. A. Halili, K. M. Irvine, D. P. Fairlie, and Matthew J. Sweet, "Histone deacetylases as regulators of inflammation and immunity", Trends Immunol., Vol. 32, pp. 335-343, 2011.   DOI   ScienceOn
9 O. Witt and R. Lindemann "HDAC inhibitors: Magic bullets, dirty drugs or just another targeted therapy", Cancer Lett., Vol. 280, pp. 123-124, 2009.   DOI   ScienceOn
10 T. Suzuki, A. Kouketsu, A. Matsuura, A. Kohara, S. I. Ninomiya, K. Kohdaa, and Naoki Miyataa, "Thiol-based SAHA analogues as potent histone deacetylase Inhibitors", Bioorg. Med. Chem. Lett., Vol. 14, pp. 3313-3317, 2004.   DOI   ScienceOn
11 S. E. Choi, S. V.W. Weerasinghe, and M. K. H. Pflum, "The structural requirements of histone deacetylase inhibitors: suberoylanilide hydroxamic acid analogs modified at the C3 position display isoform selectivity", Bioorg. Med. Chem. Lett., Vol. 21, pp. 6139-6142, 2011.   DOI   ScienceOn
12 D. Ling, G. M. Marshall, P. Y. Liu, N. Xu, C. A. Nelson, S. E. Iismaa, and T. Liu, "Enhancing the anticancer effect of the histone deacetylase inhibitor by activating transglutaminase", Eur. J. Cancer, Vol. 48, pp. 3278-3287, 2012.   DOI   ScienceOn
13 H. Wang, Z. Y. Lim, Y. Zhou, M. Ng, T. Lu, K. Lee, K. Sangthongpitag, K. C. Goh, X. Wangb, X. Wub, H. H. Khng, S. K. Goh, W. C. Ong, Z. Bonday, and E. T. Sun, "A acylurea connected straight chain hydroxamates as novel histone deacetylase inhibitors: synthesis, SAR, and in vivo antitumor activity", Bioorg. Med. Chem. Lett., Vol. 20, pp. 3314-3321, 2010.   DOI   ScienceOn
14 A. Wahhab, D. Smil, A. Ajamian, M. Allan, Y. Chantigny, E. Therrien, N. Nguyen, S. Manku, S. Leit, J. Rahil, A. J. Petschner, A. H. Lu, A. Nicolescu, S. Lefebvre, S. Montcalm, M. Fournel, T. P. Yan, Z. Li, J. M. Besterman, and R. Deziel, "Sulfamides as novel histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 19, pp. 336-340, 2009.   DOI   ScienceOn
15 S. Manku, M. Allan, N. Nguyen, A. Ajamian, J. Rodrigue, E. Therrien, J. Wang, T. Guo, J. Rahil, A. J. Petschner, A. Nicolescu, S. Lefebvre, Z. Li, M. Fournel, J. M. Besterman, R. Deziel, and A. Wahhab, "Synthesis and evaluation of lysine derived sulfamides as histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 19, pp. 1866-1870, 2009.   DOI   ScienceOn
16 B. Chen, P. A. Petukhov, M. Jung, A. Velena, E. Eliseeva, A. Dritschilob, and A. P. Kozikowski, "Chemistry and biology of mercaptoacetamides as novel histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 15, pp. 1389-1392, 2005.   DOI   ScienceOn
17 K. Ito, P. J. Barnes, and I. M. Adcock, "Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1beta-induced histone H4 acetylation on lysines 8 and 12", Mol. Cell. Biol., Vol. 20, pp. 6891-6903, 2000.   DOI
18 O. Moradei, S. Leit, N. Zhou, S. Frechette, I. Paquin, S. Raeppel, F. Gaudette, G. Bouchain, S. H. Woo, A. Vaisburg, M. Fournel, A. Kalita, A. Lu, M. C. T. Bourget, P. T. Yan, J. Liu, Z. Li, J. Rahil, A. R. MacLeod, J. M. Bestermanb, and Daniel Delormea, "Substituted N-(2-aminophenyl)-benzamides, (E)-N-(2-aminophenyl)-acrylamides and their analogues: Novel classes of histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 16, pp. 4048-4052, 2006.   DOI   ScienceOn
19 I. Paquin, S. Raeppel, S. Leit, F. Gaudette, N. Zhou, O. Moradei, O. Saavedra, N. Bernstein, F. Raeppel, G. Bouchain, S. Frechette, S. H. Woo, A. Vaisburg, M. Fournel, A. Kalita, M. F. Robert, A. Lu, M. C. T. Bourget, P. T. Yan, J. Liu, J. Rahil, A. R. MacLeod, J. M. Besterman, Z. Lib, and Daniel Delorme, "Design and synthesis of 4-[(s-triazin-2-ylamino)methyl]-N-(2-aminophenyl)-benzamides and their analogues as a novel class of histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 18, pp. 1067-1071, 2008.   DOI   ScienceOn
20 A. J. M. De Ruijter, A. H. Van Gennip, H. N. Caron, S. Kemp, and A. B. P. Van Kuilenburg, "Histone deacetylases (HDACs): characterization of the classical HDAC family", Biochem. J., Vol. 370, pp. 737-749, 2003.   DOI   ScienceOn
21 D. J. Witter, S. Belvedere, L. Chen, J. Paul Secrist, R. T. Mosleyd, and T. A. Millera, "Benzo[b]thiophenebased histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 17, pp 4562-4567, 2007.   DOI   ScienceOn
22 T. Sundarapandian, J. Shalini, S. Sugunadevi, and L. K. Woo, "Docking-enabled pharmacophore model for histone deacetylase 8 inhibitors and its application in anti-cancer drug discovery", J. Mol. Graph. Model., Vol. 29, pp. 382-395, 2010.   DOI   ScienceOn
23 S. Thangapandian, S. John, S. Sakkiah, and K. W. Lee, "Ligand and structure based pharmacophore modeling to facilitate novel histone deacetylase 8 inhibitor design", Eur. J. Med. Chem., Vol. 45, pp. 4409-4417, 2010.   DOI   ScienceOn
24 D. J. Witter, S. Belvedere, L. Chen, J. P. Secrist, R. T. Mosleyd, and T. A. Miller, "Benzo[b]thiophenebased histone deacetylase inhibitors", Bioorg. Med. Chem. Lett., Vol. 17, pp. 4562-4567, 2007.   DOI   ScienceOn
25 D. P. Christensen, M. Dahllof, M. Lundh, D. N. Rasmussen, M. D. Nielsen, N. Billestrup, L. G. Grunnet, and T. M. Poulsen, "Histone deacetylase (HDAC) inhibition as a novel treatment for diabetes mellitus", doi: 10.2119/molmed.2011.00021   DOI   ScienceOn
26 S. Vadivelan, B.N. Sinha, G. Rambabu, K. Boppana, and S.A.R.P. Jagarlapudi, "Pharmacophore model ing and virtual screening studies to design some potential histone deacetylase inhibitors as new leads", J. Mol. Graph. Model., Vol. 26, pp. 935-946, 2008.   DOI   ScienceOn
27 Y. Chen, H. Li, W. Tang, C. Zhu, Y. Jiang, J. Zou, Q. Yu and Q. You, "3D-QSAR studies of HDACs inhibitors using pharmacophore-based alignment", Eur. J. Med. Chem., Vol.44, pp. 2868-2876, 2009.   DOI   ScienceOn
28 R. Heinke, L. Carlino, S. Kannan, M. Jung, and W. Sippl, "Computer-and structure-based lead design for epigenetic targets", Bioorg. Med. Chem., Vol. 19, pp. 3605-3615, 2011.   DOI   ScienceOn
29 S. Balasubramanian, J. Ramos, W. Luo, M. Sirisawad, E. Verner, and J. J. Buggy, "A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas Leukemia 22", doi: 10.1038/leu.2008.9   DOI   ScienceOn
30 H. S. Suh, S. Choi, P. Khattar, N. Choi, and S. C. Lee, "Histone deacetylase inhibitors suppress the expression of inflammatory and innate immune response genes in human microglia and astrocytes", J. Neuroimmune Pharmacol., Vol. 5, pp. 521-32, 2010.   DOI   ScienceOn
31 F. Miao, I. G. Gonzalo, L. Lanting, and R. Natarajan, "In vivo chromatin remodeling events leading to inflammatory gene transcription under diabetic conditions", J. Biol. Chem., Vol. 279, pp. 18091-18097, 2004.   DOI   ScienceOn
32 N. Shanmugam, M. A. Reddy, M. Guha, and R. Natarajan, "High glucose-induced expression of proinflammatory cytokine and chemokine genes in monocytic cells", Diabetes, Vol. 52, pp. 1256-64, 2003.   DOI
33 I. V. Gregoretti, Y. M. Lee, and H. V. Goodson, "Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis", J. Mol. Biol., Vol. 338, pp. 17-31, 2004.   DOI   ScienceOn
34 M. A. Halili, M. R. Andrews, L. I. Labzin, K. Schroder, G. Matthias, C. Cao, E. Lovelace, R. C. Reid, G. T. Le, D. A. Hume, K. M. Irvine, P. Matthias, D. P. Fairlie, and M. J. Sweet, "Differential effects of selective HDAC inhibitors on macrophage inflammatory responses to the Toll-like receptor 4 agonist LPS", J. Leukoc. Biol., Vol. 87, pp. 1103-14, 2010.   DOI   ScienceOn
35 F. Leoni, G. Fossati, E. C. Lewis, J. K. Lee, G. Porro, P. Pagani, D. Modena, M. L. Moras, P. Pozzi, L. L. Reznikov, B. Siegmund, G. Fantuzzi, C. A. Dinarello, and Paolo Mascagni, "The histone deacetylase inhibitor ITF2357 reduces production of proinflammatory cytokines in vitro and systemic inflammation in vivo", Mol. Med., Vol. 11, pp. 1-15, 2005.
36 M. A. Halili, M. R. Andrews, M. J. Sweet, and D. P. Fairlie, "Histone deacetylase inhibitors in inflammatory disease", Curr. Top. Med. Chem., Vol. 9, pp. 309-319, 2009.   DOI   ScienceOn
37 C. Choudhary, C. Kumar, F. Gnad , M. L. Nielsen, M. Rehman, T. C. Walther, J. V. Olsen, and M. Mann, "Lysine acetylation targets protein complexes and co-regulates major cellular functions", Science, Vol. 325, pp. 834-840, 2009.   DOI   ScienceOn
38 A. Vannini, C. Volpari, P. Gallinari, P. Jones, M. Mattu, A. Carfi, R. D. Francesco, C. Steinkuhler, and S. D. Marco, "Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8-substrate complex", EMBO reports, Vol. 8, pp. 9, 2007.
39 S. Timmermann, H. Lehrmann, A. Polesskaya, and A. Harel-Bellan, "Histone acetylation and disease", Cell. Mol. Life Sci., Vol. 58, pp. 728-736, 2001.   DOI
40 E. D. Gennaro, F. Bruzzese1, M. Caraglia, A. Abruzzese, and A. Budillon, "Acetylation of proteins as novel target for antitumor therapy", Amino Acids, Vol. 26, pp. 435-441, 2004.